"To assure that pumping does not lead to further degradation of water quality in the Basin, a Five-Year Water Quality and Supply Plan must be prepared and updated annually by Watermaster..." Section 28 of Watermaster's Rules and Regulations # Five-Year Water Quality and Supply Plan November 2020 # **CONTENTS** | I. INTRODU | CTION | 2 | |-------------|--|----| | | PURPOSE OF THE FIVE-YEAR PLAN | 2 | | | WATERMASTER BACKGROUND AND HISTORY | 2 | | | Figure 1. Area Covered by Main San Gabriel Basin | 3 | | II. CURREN | IT WATER SUPPLY CONDITIONS | 4 | | | WATER SUPPLY INFLOWS DURING 2019-20 | 4 | | | Figure 2. Rainfall Below Long-Term Average | 4 | | | Figure 3. Imported Water Deliveries Continue Upward Trend | 5 | | | Figure 4. Local Water Conserved About 100% of Average | 6 | | | Figure 5. Cyclic Storage Continues Upward Trend | 7 | | | Figure 6. Cyclic Storage and Rainfall Impacts on Key Well | 8 | | | Figure 7. Total Water Demand Decreased | 8 | | | Figure 8. Key Well Elevations During the Last Ten Years | 10 | | | Figure 9. Water Stored in San Gabriel Canyon Reservoirs | 11 | | | Figure 10. Projected and Historical Water Production | 11 | | III. CURRE | NT WATER QUALITY CONDITIONS | 12 | | | PRIMARY CONTAMINANTS IN THE GROUNDWATER BASIN | 13 | | | WELLS ASSESSED FOR VULNERABILITY TO CONTAMINATION | 15 | | | Figure 11. Location Map of USEPA Operable Units | 15 | | | Figure 12. Volatile Organic Compound Levels in Groundwater Throughout the Basin | 16 | | | Figure 13. Nitrate Levels in Groundwater Throughout the Basin | 17 | | IV. FIVE-YE | AR WATER QUALITY AND SUPPLY PLAN | 18 | | | GROUNDWATER MONITORING PROGRAMS | 18 | | | CONTINUE BASINWIDE GROUNDWATER ELEVATION MONITORING PROGRAM (BGWEMP) | 19 | | | IMPLEMENT PROVISIONS OF SUSTAINABLE GROUNDWATER MANAGEMENT ACT (SGMA) | 19 | | | GROUNDWATER QUALITY MONITORING | 20 | | | GROUNDWATER FLOW AND CONTAMINANT MIGRATION PROGRAMS | 21 | | | GROUNDWATER CLEANUP PROJECTS | 22 | | | BASIN CLEANUP PROJECTS/USEPA OPERABLE UNIT PLANS | 23 | | | OTHER WATER QUALITY PLANNING AND ACTIONS | 23 | | | WATER SUPPLY AND DROUGHT MANAGEMENT PLANNING AND ACTIONS | 24 | | | PROJECTED GROUNDWATER DEMANDS PRODUCER ESTIMATES | 29 | | V. DIRECTO | PRY TO APPENDICES | 30 | | | Appendix A. Projected Groundwater Demands from 2020-21 to 2024-25 | | | | Appendix B. Simulated Changes in Groundwater Elevations at Wells or Wellfields in Main San Gabriel Basin | | | | Appendix C. Highlights of Volatile Organic Compounds and Nitrate | | | | Concentrations, and Wells Vulnerable to Contamination | | | | Appendix D. Potential Sites for Aquifer Performance Tests | | | | Appendix E. Summary of Treatment Facility Activity in the Main San Gabriel Basin | | | | Appendix F. Simulated Basin Groundwater Contours 2019-20 and 2024-25 (Figures 14 and 15), | | | | Simulated Groundwater Elevation Changes Between FY 2019-20 and FY 2024-25 (Figure 16), | | | | VOC Plume Map in BPOU and Perchlorate Plume Map in BPOU (Figures 17 and 18) | | ### INTRODUCTION Main San Gabriel Basin Watermaster (Watermaster) annually prepares and updates this Five-Year Water Quality and Supply Plan (Five-Year Plan) in accordance with the requirements of Section 28 of its Rules and Regulations. The objective is to coordinate groundwater-related activities so that both water supply and water quality in the Main San Gabriel Basin (Basin) are protected and improved. ### **PURPOSE OF THE FIVE-YEAR PLAN** Many important issues are detailed in the Five-Year Plan, including Watermaster's plans for the following activities: - 1. Monitor groundwater supply and quality. - 2. Develop projections of future groundwater supply and quality. - 3. Ensure adequate supplemental water is available for groundwater replenishment. - 4. Review and cooperate on cleanup projects, and provide technical assistance to other agencies. - 5. Assure that pumping does not lead to further degradation of water quality in the Basin. - 6. Address emerging contaminants in the Basin. - 7. Develop a cleanup and water supply program consistent with the U.S. Environmental Protection Agency (USEPA) plans for its Main San Gabriel Basin Superfund sites. - 8. Continue to perform responsibilities under the Baldwin Park Operable Unit (BPOU) Project Agreement relating to project administration and performance evaluation. ### WATERMASTER BACKGROUND AND HISTORY The Los Angeles County Superior Court created the Main San Gabriel Basin Watermaster in 1973 to resolve water issues that had arisen among water users in the San Gabriel Valley. At that time, Watermaster's mission was to generally manage the water supply of the Basin. During the late 1970s and early 1980s, significant concentrations of contaminants were detected in the groundwater Basin. The contamination was caused in part by past practices of local industries that had inappropriately disposed of industrial solvents and by infiltration of nitrates from an earlier agricultural period. Cleanup efforts for industrial contamination were undertaken at the local, state, and federal levels. ### WATERMASTER RECEIVES WATER QUALITY RESPONSIBILITIES By 1989, local water agencies had adopted a joint resolution concerning water quality issues, which stated that Watermaster should coordinate local activities aimed at preserving and restoring the quality of groundwater in the Basin. The joint resolution also called for a Basin cleanup plan. In 1991, the Los Angeles County Superior Court granted Watermaster the authority to control pumping for water quality purposes. Accordingly, Watermaster added Section 28 to its Rules and Regulations regarding water quality management. The new responsibilities included developing this Five-Year Water Quality and Supply Plan; updating it annually and submitting it to the California Regional Water Quality Control Board, Los Angeles Region (Regional Board); and making it available for public review by November 1 of each year. # PLAN TO PERMANENTLY BALANCE THE BASIN'S GROUNDWATER SUPPLY For decades, the Basin depended on imported replenishment water to meet about 20% of local needs. The reliability of these imported supplies has been diminishing over the years. The 2011–2016 drought—the worst recorded in California history—made clear that Watermaster could not exclusively count on imported water deliveries each year for long-term sustainability. Early in the drought, Watermaster recognized the changes in water supply that were underway, and in 2012 unanimously approved an unprecedented set of changes to its Rules and Regulations to engage in developing new, proactive water supplies and storage. There are many elements to the effort, but the three most important are: - 1. Maintain a low Operating Safe Yield (OSY). The key impact of a low OSY is that it requires the purchase of additional Replenishment Water to meet demands, while helping to refill the Basin. - 2. Collect funds through the Resources Development Assessment (RDA) to purchase Replenishment Water whenever it is available and use the water to replenish the Basin to help counter the impacts of future extreme droughts. - 3. Collaborate in the Metropolitan Water District's (MWD) Regional Recycled Water Program, which has the potential to deliver large amounts of recycled water to the Basin to replace variable imported supplies and decreased local runoff in dry years. Figure 1. AREA COVERED BY MAIN SAN GABRIEL BASIN ## **CURRENT WATER SUPPLY CONDITIONS** Drier-than-normal conditions have persisted in the San Gabriel Valley for the past two decades. Commencing fiscal year 1995–96, annual rainfall has been below the long-term average annual amount of 18.52 inches in 18 of the past 25 years. Annual rainfall for fiscal year 2019–20 was 17.73 inches, which is about 96% of average. More information about programs to improve long-term water reliability is provided under Water Supply and Drought Management Planning and Actions on page 24 at the end of Section IV. ### WATER SUPPLY INFLOWS DURING 2019-20 VALLEY RECEIVES 96% AVERAGE RAINFALL Figure 2. RAINFALL WAS BELOW LONG-TERM AVERAGE In 2019–20, the San Gabriel Valley received 17.73 inches of rain, which is about 96% of the long-term average of 18.52 inches. The rainfall total is made up of an average taken from four stations located in San Dimas, Diamond Bar, El Monte, and Pasadena. Rainfall has been below average over the past two decades. Eighteen of the past 25 years have experienced below-average rainfall. 120,000 116,000 Acre-Feet 100,000 2012-13 Changes Made to Increase **Water Management Flexibility** 80,000 Acre-Feet 60,000 Long-Term Average = 59.000 Acre-Feet 40,000 20,000 1998-99 2003-04 2008-09 2013-14 2019-20 Fiscal Year Ending June 30 Figure 3. IMPORTED WATER DELIVERIES CONTINUE UPWARD TREND Imported water deliveries (treated and untreated) during 2019–20 totaled about 116,000 acrefeet for direct use and groundwater replenishment. This is about 197% higher than the long-term average of about 59,000 acre-feet. # MANAGEMENT CHANGES SINCE 2012-13 ARE RESULTING IN INCREASED IMPORTED SUPPLIES The long-term reliability of imported water supplies has decreased due to drought, increased competition for limited water supplies and regulations that allocate water supplies for environmental uses. Despite these challenges, Watermaster's assertive management programs and flexible funding for imported water supply purchases through the RDA, Cyclic Storage, and other programs has enabled a trend of increasing imports of water to help balance the Basin over the long term. Water Recharged in the Past 25 Years 17 Years Below Average Recharge 7 Years Above Average Recharge 1 Year Average Recharge with the addition of RDA Water Long-Term Average = 101,000 Acre-Feet 2005-06 **Fiscal Year** Figure 4. LOCAL WATER CONSERVED ABOUT 100% OF AVERAGE Approximately 79,000 acre-feet of local water and 22,000 acre-feet of RDA
water was conserved during 2019-20. The purchase of RDA water has helped 2019-20 to become about 100% of the long-term average. 2010-11 2015-16 2019-20 ### LOCAL STORMWATER CAPTURE 78% OF LONG-TERM AVERAGE Total rainfall from 2011–12 through 2017–18 had been well below average (an especially severe seven-year drought period within a longer 20-plus years of mostly drought conditions). As a result, the San Gabriel River Watershed was very dry in 2017–18. However, during 2018–19, rainfall was about 140% of average, which saturated the soil and increased stormwater runoff capture and storage in reservoirs for subsequent replenishment. During 2019–20, rainfall was about 96% of average. However, stormwater capture was about 79,000 acre-feet, which was only 78% of average. Once again, the dry ground absorbed more rainfall, limiting runoff. Stormwater runoff from rainfall, as well as delivery of RDA water and untreated imported water, increased the groundwater level by about six feet during fiscal year 2019-20. 1995-96 * Imported RDA water is another source of groundwater replenishment that supplements local stormwater capture. In addition to local stormwater capture, about 22,000 acre-feet of untreated imported water was replenished for general benefit as part of Watermaster's RDA Program. Consequently, a total of about 101,000 acre-feet of water was replenished, which is roughly 100% of the long-term average. At the end of the fiscal year (June 30, 2020), about 63,000 acre-feet of local stormwater runoff remained in storage in reservoirs in the San Gabriel Canyon. About half of this stored water is used for groundwater replenishment in the Basin—representing an additional four-foot increase in Basin water levels—to offset decreasing groundwater levels caused by pumping. 2000-01 ### **Agreement to Pre-Deliver Imported Water Provided Additional** **Replenishment Water.** Recognizing the importance of delivering untreated imported water when it was available, during fiscal year 2017–18 Watermaster and the Upper San Gabriel Valley Municipal Water District (Upper District) entered into an agreement with Metropolitan Water District of Southern California (MWD) to pre-deliver untreated imported water to complement the RDA Program. MWD delivered a total of 58,517.5 acre-feet during 2017-18. Subsequently, during fiscal year 2018–19, Watermaster and Upper District entered into a second agreement with MWD to pre-deliver an additional 110,000 acre-feet of untreated imported water during calendar year 2019. MWD delivered a total of about 97,000 acre-feet in 2019. In addition, Watermaster and the Three Valleys Municipal Water District (Three Valleys District) entered into a similar agreement with MWD to pre-deliver Untreated imported water in 2019-20. Figure 5. CYCLIC STORAGE CONTINUES UPWARD TREND As of June 30, 2020, a total of about 225,500 acre-feet was in Cyclic Storage: about 24,000 acre-feet from Three Valleys Municipal Water District, about 8,900 acre-feet by San Gabriel Valley Municipal Water District, 8,000 acre-feet by Upper San Gabriel Valley Municipal Water District, 38,700 acre-feet by Producers, 12,700 acre-feet by Water Resource Development, 123,600 acre-feet by MWD, and 9,600 acre-feet by Puente Basin Water Agency. Cyclic Storage as of June 30, 2020, was about 58,800 acre-feet above the previous year's total. Long-term average annual storage is about 61,800 acre-feet. Figure 6. CYCLIC STORAGE AND RAINFALL IMPACTS ON KEY WELL The additional water provided by Cyclic Storage and RDA Water helps local agencies meet their future Replacement Water obligations. This graph also forecasts Key Well elevations for three scenarios: wet years, average years, and dry years. Figure 7. TOTAL WATER DEMAND (WATER USE) DECREASED Long-term average water demand is about 261,993 acre-feet. During fiscal year 2019–20, total demand was about 223,900 acre-feet, made up of groundwater (183,300 acre-feet), surface water (9,300 acre-feet), imported treated water (26,300 acre-feet), and recycled water (5,000 acre-feet). ### LOCAL WATER DEMAND (WATER USE) BELOW AVERAGE Total water use within the San Gabriel Valley consists of groundwater production, surface water diversions, treated imported water deliveries, and recycled water for irrigation projects. During the previous fiscal year (2018–19), total water use was about 220,000 acre-feet. During fiscal year 2019–20, total water use was about 223,900 acre-feet (details available in caption for Figure 7). **Conservation Programs Are Working.** In recent years, Watermaster has worked with stakeholders to promote retail water conservation, and water use has decreased due to greater consumer awareness of drought conditions and increased water conservation by those consumers. Total water use during fiscal year 2019–20 is about 5% lower than the recent ten-year average of about 235,000 acre-feet, and also about 16% lower than fiscal year 2013-14, which preceded the then governor's declaration mandating water conservation. ### CONTINUED TO MAINTAIN A CONSERVATIVE OPERATING SAFE YIELD Main San Gabriel Basin Watermaster annually establishes an OSY, which is based on prevailing hydrologic conditions in the San Gabriel Valley. Because production in excess of the OSY is subject to an assessment that is used to purchase untreated imported water to replenish the Basin, setting a low OSY encourages conservation and increases funding to purchase additional imported supplies to replenish the Basin. Maintaining a low OSY is a central part of the overall plan to manage the Basin in a way that makes the water supply more stable and the costs more predictable in both wet and dry years. Total Basin production during fiscal year 2019–20 was about 192,600 acre-feet, which was about 1% higher than the previous year. Production in excess of water rights during fiscal year 2019–20 was about 37,200 acre-feet, about the same as the prior year and about 1% lower than the long-term average of about 37,700 acrefeet. Watermaster aggressively responded to the decreasing trend of the groundwater level at the Key Well during fiscal year 2019–20 by establishing an OSY of 150,000 acre-feet for fiscal year 2020–21 (identical to the OSY for the last six years and about 45,000 acre-feet below the long-term average of about 195,000 acre-feet). ### KEY WELL WITHIN OPERATING RANGE The Baldwin Park Key Well is used as the benchmark for determining how the groundwater supply for the entire Basin is trending. In accordance with the Judgment, Watermaster manages the Basin with a goal of maintaining the groundwater level at the Key Well between 200 feet and 250 feet above mean sea level to the extent possible. As of November 21, 2018, the groundwater level at the Baldwin Park Key Well had declined to a historic low of about 169 feet. It has since risen 34 feet to just above 203 feet as of June 30, 2020, due to extensive management actions, described below, and improved rainfall. ### FACTORS THAT INITIATED RECOVERY IN KEY WELL LEVELS Collectively, the factors below and others resulted in a Key Well elevation of 203.1 feet as of June 30, 2020—an increase of about 6.3 feet from the prior year. This elevation is about 3 feet above the "low" end of the target operating range for Watermaster. - **Increased Rainfall.** During fiscal year 2019-20, rainfall was about 96% of average while stormwater runoff was about 78% of average. - **Coordination to Import Untreated Water.** Watermaster coordinated with Producers and the Responsible Agencies to import about 89,000 acre-feet of untreated water to the Basin. In addition, about 22,000 acre-feet of RDA water was delivered to the Basin to augment stormwater runoff. - **Continued Low Groundwater Pumping.** Groundwater production was only about 183,300 acre-feet, well below the long-term average of about 222,000 acre-feet. Figure 8. KEY WELL ELEVATIONS DURING THE LAST TEN YEARS **Key Well Brought Within Operating Range.** The groundwater elevation at the Key Well on June 30, 2020, was 203.1 feet, which is within the Basin's target operating range of 200 to 250 feet. ### INCREASE IN WATER STORED IN CANYON RESERVOIRS Cogswell, San Gabriel, and Morris Reservoirs have a combined maximum storage capacity of about 85,000 acre-feet. At the end of the 2019–20 fiscal year, about 63,000 acre-feet of water was stored in these reservoirs. This is about 8,000 acre-feet more than the previous year, representing about 158% of the long-term average of about 40,000 acre-feet of water in storage at the end of the fiscal year, and about 76% of total reservoir capacity. In addition, about 79,000 acre-feet of solely local runoff was recharged into the groundwater basin during fiscal year 2019–20. 70,000 60,000 Long-Term Average: Acre-Feet 50,000 39.542 Acre-Feet 40,000 30,000 20,000 10,000 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 End of Year Storage (June 30) San Gabriel Dam ☐ Cogswell Morris Dam - Total Figure 9. WATER STORED IN SAN GABRIEL CANYON RESERVOIRS Total water stored in San Gabriel Canyon reservoirs at the end of the fiscal year was 62,559 acre-feet, about 158% of the long-term average. Figure 10. PROJECTED AND HISTORICAL WATER PRODUCTION Total groundwater production from the Basin for the 2019–20 fiscal year was about 183,300 acre-feet, which is higher than the previous year's production of 183,100 acre-feet, and significantly lower than the ten-year average of 202,000 acre-feet. The decrease in groundwater production over time, as illustrated in Figure 10, is primarily the result of increased water conservation at the consumer level. Groundwater production is influenced by a variety of conditions, including population, seasonal precipitation, groundwater contamination, and availability of surface water. Excluding the impacts of seasonal precipitation, groundwater production had experienced a gradual long-term increase, consistent with increasing population, as shown in Figure 10. Since 2013–14, there
has been a significant decrease in groundwater (and overall) demand, which is likely the result of increased water conservation by consumers. # **CURRENT WATER QUALITY CONDITIONS** Groundwater delivered to customers continues to be of high quality and always meets state and federal drinking water standards. However, several contaminants in areas of the Basin require careful monitoring and treatment before the water is served for domestic use. These contaminants include a variety of industrial solvents referred to as volatile organic compounds (VOCs) and nitrates (primarily from fertilizers used during the Valley's agricultural period). Since 1997, additional contaminants have been detected: perchlorate, a solid rocket fuel ingredient; N-nitrosodimethylamine (NDMA), associated with liquid rocket fuel; 1,2,3-trichloropropane (1,2,3-TCP), a degreasing agent; and 1,4-dioxane, a stabilizer for chlorinated solvents. Since the early 1990s, over 1.73 million acre-feet of contaminated groundwater have been treated for beneficial use. ### → AGGRESSIVE WATER QUALITY RESPONSE BEGAN IN 1980s While only present in limited portions of the Basin, the detected contaminants pose difficult challenges to water Producers. When the chemicals were initially detected in the late 1980s, Watermaster responded vigorously and worked closely with the local water community to sponsor research on treatment methods and to design, fund, and construct cleanup projects as rapidly as possible rather than waiting for the USEPA and the firms named as responsible for the contamination to take action. In response to the detection of these contaminants, Watermaster and local water entities aggressively pursued construction of treatment facilities to control the spread of contaminants and continue providing high-quality water that meets all state and federal drinking water standards. This policy of remediation and reuse preserves a valuable resource, particularly during the current prolonged drought conditions, and reduces the overall cost of groundwater cleanup. Initially, a number of VOC treatment facilities were constructed, and water with excessive nitrate concentrations was blended with higher-quality water to reach acceptable levels. Since the detection of perchlorate, NDMA, 1,2,3-TCP, and 1,4-dioxane, Watermaster has been instrumental in the successful development and operation of facilities to treat those contaminants. ### WATERMASTER IS ACTIVE IN OPERABLE UNITS Multiple Roles in Baldwin Park Operable Unit. Watermaster led negotiations that resulted in the BPOU Project Agreement, including reimbursement for groundwater cleanup costs from certain parties responsible for the contamination. Under the BPOU Agreement, Watermaster is responsible for overall project coordination and administration, groundwater monitoring, and compliance with USEPA reporting requirements. Watermaster also participates in decisions regarding construction, operations, and technology selection. Now that all of the BPOU treatment facilities are operational, Watermaster also monitors the BPOU Project's performance in containing and removing contamination. Watermaster Role in Other Operable Units. In addition to cleanup activities with the BPOU, Watermaster coordinates and maintains records on groundwater cleanup efforts within the Puente Valley Operable Unit (PVOU), the El Monte Operable Unit (EMOU), South El Monte Operable Unit (SEMOU), the Area 3 Operable Unit (Area 3 OU), and the Whittier Narrows Operable Unit (WNOU). The location of these Operable Units is shown in Figure 11. ### PRIMARY CONTAMINANTS IN THE GROUNDWATER BASIN ### VOLATILE ORGANIC COMPOUNDS AND NITRATES The location of VOC contamination and cleanup methods for VOCs are generally well understood and are being safely treated and managed within the Basin. VOCs and nitrates are the most prevalent contaminants found in the Basin. Intensive monitoring and research concerning these two types of contaminants have been underway for many years. During fiscal year 2019-20, 30 plants treated roughly 24.4 billion gallons (about 75,000 acre-feet) of VOC-contaminated water as shown in the table at the end of Appendix E. Although VOC contamination is substantial, as Figure 12 shows, it is centered in → just a few areas, leaving a large portion of the Basin unaffected. Figure 13 indicates that nitrates are also concentrated in a few areas, with the highest concentrations in the eastern portion of the Basin, away from the most productive pumping areas. Water containing nitrates above the Maximum Contaminant Level (MCL) is either blended with other low-nitrate sources of water or not used. ### PERCHLORATE **Background on Perchlorate.** In January 2002, the State Water Resources Control Board, Division of Drinking Water (DDW), lowered the Notification Level (NL) for perchlorate from 18 parts per billion to 4 parts per billion, and 22 wells were removed from service due to unacceptable levels of perchlorate. DDW subsequently raised the NL to 6 parts per billion in March 2004, and later established an MCL of 6 parts per billion during October 2007. Watermaster played a key role in developing the first treatment facility to remove perchlorate from drinking water. On February 27, 2015, the Office of Environmental Health Hazard Assessment (OEHHA) published an updated Public Health Goal (PHG) of 1 part per billion for perchlorate in drinking water. Once OEHHA establishes or revises a PHG for a contaminant with an MCL, a determination will be made by DDW as to whether the MCL should be considered for possible revision. perchlorate contamination and cleanup methods for perchlorates are generally well understood and are being safely treated and managed within the Basin. The location of This Year's Perchlorate Related Actions. Ion-exchange technology treatment facilities were operational at five sites in the BPOU and at two facilities in other parts of the Basin during fiscal year 2019–20. Based on their review of the perchlorate MCL, DDW recommended to first establish a lower Detection Limit for Purposes of Reporting (DLR) to gather additional occurrence data, and then revise the MCL if the new data support development of a new standard. In April 2020, The location of NDMA contamination and cleanup methods for NDMA are generally well understood and are being safely treated and managed within the Basin. DDW issued a Notice of Proposed Rulemaking to consider lowering the perchlorate DLR to 2 parts per billion. In anticipation of a possible revision to the perchlorate MCL, Watermaster coordinated with Producers to conduct "low-level" detection sampling for perchlorate, using a laboratory detection level of 0.1 part per billion, which allowed for detection of perchlorate below the current DLR of 4 parts per billion. ### N-NITROSODIMETHYLAMINE (NDMA) During 1998, eight local wells were found to contain levels of NDMA above the NL (2 parts per trillion at that time). Five of the wells with measurable levels of NDMA had already been taken out of service for other reasons; the other three were put on inactive status once NDMA was detected. DDW subsequently raised the NL to 10 parts per trillion. As with perchlorate, Watermaster played a key role in the construction of NDMA treatment facilities in the BPOU area of the Basin. Five facilities were operational during fiscal year 2019–20. ### 1,2,3-TRICHLOROPROPANE (1,2,3-TCP) The degreasing agent 1,2,3-TCP has been detected in the groundwater above the MCL of 5 parts per trillion, primarily in the BPOU and the Area 3 OU. The compound was detected in the BPOU during the winter of 2006, and its presence delayed use of one treatment facility for potable purposes. Following detection, Watermaster, in cooperation with its BPOU Project partners, worked to construct treatment facilities to remove 1,2,3-TCP from the groundwater to make it suitable for potable uses. Those facilities remained operational during fiscal year 2019–20. 1,2,3-TCP contamination and cleanup methods for 1,2,3-TCP are generally well understood and are being safely treated and managed within the Basin. The location of # ACTION ON EMERGING CONTAMINANTS: PFAS (PER-AND POLYFLUOROALKYL SUBSTANCES) **Background on PFAS.** PFAS are a class of synthetic chemicals that are not found naturally in the environment. PFAS are used extensively in consumer products such as carpets, clothing, paper packaging for food, personal care items (e.g., cosmetics, fragrances, hairspray), and other materials designed to be waterproof, stain-resistant, or nonstick (e.g., cookware). PFAS are persistent and do not break down in the environment. **Current Actions on PFAS.** Perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS) are two key PFAS chemicals. DDW required specific water systems to conduct water quality tests for these compounds during 2019 and established the NL for PFOA at 5.1 parts per trillion and PFOS at 6.5 parts per trillion. DDW also established a Response Levels (RL) of 10 parts per trillion for PFOA and 40 parts per trillion for PFOS, based on a running four-quarter average. Exceedance of the RL requires the drinking water source to be taken out of service or the water system must provide public and customer notice of the exceedance. To assist the Producers, Watermaster conducts and will continue conducting PFAS sampling and monitoring as required by the State Water Resources Control Board as part of the Basinwide Groundwater Monitoring Program (BGWQMP). In addition, Watermaster is working with DDW to characterize the extent of PFAS in the Basin. # WELLS ASSESSED FOR VULNERABILITY TO CONTAMINATION One of the primary purposes of the Five-Year Plan is to identify Basin wells that are vulnerable to contamination. A well is considered vulnerable if the concentration of contaminants has ever reached 50% of the NL or MCL allowed by state drinking water regulations. In an effort to project which wells may be vulnerable over the next
five years, Watermaster reviews water quality tests performed on each well, regional water quality conditions, and contaminant migration patterns. Watermaster also participates in plans to construct treatment facilities, as needed. ### WATER QUALITY PROTECTION PLAN Watermaster maintains a Water Quality Protection Plan that provides an early warning to Producers of potential increases in contaminant levels. The Water Quality Protection Plan also provides suggested alternative sources of supply and proposes long-term actions to solve contamination problems without contributing to the migration of contaminants in the Basin. Figure 11. LOCATION MAP OF USEPA OPERABLE UNITS Figure 12. VOLATILE ORGANIC COMPOUND LEVELS IN GROUNDWATER THROUGHOUT THE BASIN Extensive cleanup programs are underway in the areas affected by VOC contamination. Because the main plumes of contamination are centered in just a few areas, much of the Basin remains unaffected. Figure 13. NITRATE LEVELS IN GROUNDWATER THROUGHOUT THE BASIN Historically, nitrate (N) contamination is highest in the eastern portion of the Basin, away from the San Gabriel River, the area of most intensive groundwater pumping. # FIVE-YEAR WATER QUALITY AND SUPPLY PLAN ### HISTORICAL BACKGROUND Watermaster facilitates groundwater cleanup projects that also meet water supply needs. The Main San Gabriel Basin's designation as a federal Superfund site was prompted by the discovery of widespread VOC contamination. Cleanup plans were developed to contain and remove VOCs from groundwater, and Watermaster, along with various other local water agencies, water Producers, and regulators, has worked to develop the expertise, financing, and treatment technologies to effectively address basin-wide cleanup of VOCs. ➤ The discovery of perchlorate and NDMA in 1997, however, created new challenges that complicated the existing VOC cleanup approach. Most importantly, these new contaminants could not be removed using existing treatment facilities, and new treatment methods had to be identified, financed, and implemented. This report provides a comprehensive water quality cleanup and water supply plan for the Main San Gabriel Basin, including each of the USEPA Operable Units (see Appendix E). Watermaster's plan for each Operable Unit area is consistent with the USEPA plans, and its goal is to implement cleanup as promptly as possible, with or without the cooperation of the Responsible Parties. ### **GROUNDWATER MONITORING PROGRAMS** Monitoring includes measuring groundwater levels, groundwater quality, and groundwater flow. Watermaster continuously refines its understanding of the groundwater Basin to better define the safe yield of the Basin and to protect and improve local water quality. # CONTINUE KEY WELL AND SUPPLEMENTAL KEY WELL OPERATION AND DATA PROCESSING The entire 167-square-mile groundwater Basin is managed as one unit based on the groundwater levels as measured at a single Key Well in Baldwin Park. Water levels have been measured at this well since 1903 and are currently measured every three hours by an automated recorder. Additional groundwater level recorders have been installed near the Santa Fe Spreading Grounds, adjacent to the San Gabriel River above the I-210 Freeway, in the City of Rosemead, and near Whittier Narrows Dam. These water level records are synchronized with the record in the Key Well. Collectively, water level data from these wells provides a better understanding of the impacts of recharge operations at the Santa Fe Spreading Grounds on Basin hydrogeology. Water elevation data are collected semiannually at about 170 additional wells throughout the Basin, and water level recorders may be installed in some of those wells over the next five years. # CONTINUE BASINWIDE GROUNDWATER ELEVATION MONITORING PROGRAM (BGWEMP) The purpose of the BGWEMP is to obtain groundwater level measurements from a large number of wells across the Basin. The information is used to prepare groundwater contour maps showing the direction of groundwater flow. The data are also used in the Basin computer model to simulate future groundwater flow patterns. Through implementation of the BGWEMP plan over the next five years, Watermaster will take the following steps: - Gather semiannual measurements of water levels at all 170 primary wells. - Collect weekly measurements of water levels in nine of the 170 primary wells. - Obtain water levels in secondary wells from well owners or water Producers, the San Gabriel Valley Protective Association, Regional Board, USEPA, and others. - Update the database with water level data. - Prepare semiannual groundwater contour maps of the entire Basin. - Participate in the California Statewide Groundwater Elevation Monitoring (CASGEM) program. # IMPLEMENT PROVISIONS OF SUSTAINABLE GROUNDWATER MANAGEMENT ACT (SGMA) SGMA became effective on September 29, 2014. As manager of an adjudicated Basin with ongoing effective management, Watermaster's requirements are generally limited to reporting the following information, to the extent available, for the portion of the Basin subject to the adjudication: - (A) Groundwater elevation data. Watermaster is the "Monitoring Entity" for the Main Basin under the terms of the CASGEM program and has submitted semiannual static water elevations to the Department of Water Resources (DWR) since the inception of CASGEM in 2009. Furthermore, Watermaster has collected static water elevations as part of the BGWEMP since the early 1990s. Watermaster uses the data to prepare semiannual groundwater contour maps (which are available on Watermaster's website) and support Watermaster's Main Basin groundwater computer model. Watermaster will continue to collect and review static groundwater elevation data on a regular basis. - **(B) Annual groundwater extraction data.** Watermaster's Annual Report includes quarterly groundwater extraction data for each groundwater well. In addition, Watermaster provides a projection of groundwater production by each Producer over each of the upcoming five years, as shown in Appendix A of this Plan. Copies of Watermaster's current and prior annual reports are available on Watermaster's website. - **(C) Surface water used for groundwater recharge or in-lieu use.** Watermaster has included quarterly local surface water diversions for treated potable use in Appendix G of its Annual Report. Furthermore, Watermaster has presented a summary of local surface water used for groundwater recharge in the introduction to this Plan. **(D) Total water use.** Water use in the Main Basin includes groundwater, treated local surface water, treated imported water, and recycled water. A summary of total water is included in the introduction to this Plan. ### (E) Change in groundwater storage. Groundwater storage in the Main Basin is referenced to the elevation as measured at the Baldwin Park Key Well (Key Well). The Main San Gabriel Basin Judgment (Exhibit H) notes groundwater in storage was about 7.7 million acre-feet when the elevation at the Key Well was 209 feet above mean sea level (MSL). In general, each foot of change in elevation equals about 8,000 acre-feet in storage. The Key Well elevation was about 196.8 feet on July 1, 2019, and water in storage was about 7.60 million acre-feet. The Key Well elevation on July 1, 2020, was about 203.1 feet above MSL and water in storage was about 7.65 million acre-feet. The net change in storage was an increase of about 50,000 acre-feet. ### (F) Submittal of Annual Report to the Court. Watermaster submits its Annual Report to the Court by November 1 of each year. Watermaster will provide the preceding information to DWR over the next five years in compliance with SGMA. ### **GROUNDWATER QUALITY MONITORING** ### IMPLEMENT SALT AND NUTRIENT MANAGEMENT PLAN During February 2009, the State Water Resources Control Board adopted the "Recycled Water Policy," which adopted goals for water recycling, water conservation, and replenishment of stormwater runoff to enhance water supplies throughout California. One component of the Recycled Water Policy requires all groundwater basins to develop a Salt and Nutrient Management Plan (SNMP). Watermaster took the lead role in developing the SNMP for the Main San Gabriel Basin. The SNMP identifies the existing water quality of the Main San Gabriel Basin (specifically Total Dissolved Solids [TDS]—nitrate, chloride, and sulfate, which is not addressed by USEPA cleanup activities), and compares that water quality to standards established by the Regional Board. Each of the four water quality parameters comply with the standards established by the Regional Board, resulting in significant flexibility to implement new programs to enhance groundwater replenishment and reliability. A final draft of the SNMP was submitted to the Regional Board in May 2016 to satisfy the submittal requirement and was approved by the Regional Board in December →2016. Watermaster, in coordination with water purveyors, is implementing the SNMP through continued collection and review of TDS data. The water quality data are also included in the Watermaster database to facilitate review. Simulations of the direction of groundwater flow in 2019-20 and projections for 2024-25 show that the estimated increase in groundwater pumping during this period would not significantly change the overall direction of Basin groundwater movement, and therefore would not significantly impact water quality.) # CONTINUE BASINWIDE GROUNDWATER QUALITY MONITORING PROGRAM Under the Basinwide Groundwater Quality Monitoring Program (BGWQMP), all production wells in the Basin will be sampled at least once a year for VOCs, nitrates, and TDS. In addition, sulfate and chloride are sampled at least once every three years as required by DDW. The frequency of BGWQMP sampling complements the monitoring requirements under state law and supplements information gathered through Regional Water Quality Control Board
source investigations and USEPA remedial investigations. The data collected by BGWQMP are used to identify and evaluate the current locations and magnitude of contaminant levels, along with the effectiveness of the cleanup project. ### CONTINUE TITLE 22 WATER QUALITY TESTING Watermaster continues to perform DDW-mandated Title 22 water quality sampling of groundwater from approximately 200 active wells in the Basin. Watermaster also continues to track regulations and inform local water purveyors about regulatory issues and requirements. Information from centralized water quality testing is added to Watermaster's water quality database, which contains data from many sources. The centralized testing enables Watermaster to identify water quality trends on a regional scale that might otherwise go unnoticed at a specific well, and also lowers monitoring costs to Producers. # GROUNDWATER FLOW AND CONTAMINANT MIGRATION PROGRAMS Groundwater level and quality data are entered into the Basin computer model, which simulates where contamination is projected to flow in the future. The goal is to project contaminant levels by areas in advance of a contamination event and identify remedial steps to be taken. The Basin computer model has been used to identify the area of contamination that may be captured (capture zone) under various groundwater pumping scenarios. The capture zone is also able to show the probable length of time contamination takes to flow toward a well and how long a well must be treated for contaminant removal prior to use as a drinking water supply. # GROUNDWATER SIMULATIONS SHOW FUTURE GROUNDWATER ELEVATIONS BASED ON PROJECTED DEMANDS AND REPLENISHMENT To determine the groundwater elevations throughout the Basin, Watermaster compiles the daily average 2019–20 production for each well, enters the data into the groundwater model, and simulates how production impacts water levels throughout the Basin, as shown in Figure 14 (see Appendix F). A computer simulation is then run using projected production for 2024–25, along with other water supply variables for the next five years (e.g., local water recharge, imported water recharge, subsurface inflow/outflow), assuming a five-year "dry hydrology" pattern. In addition to the historical hydrology, additional untreated imported water purchased with revenue from the RDA assessment is projected to be added to the Basin over each of the next five years. The simulated groundwater elevations are shown in Figure 15 (see Appendix F). The projected groundwater elevations reflect a general increase of about two feet throughout the Basin, which is primarily the result of the delivery of RDA water to supplement stormwater runoff for replenishment and the projected modestly increased groundwater production. These simulations indicate the estimated increase in groundwater production—based on projections by Producers and projected future "dry hydrology"—as of fiscal year 2024–25 will not significantly change the overall direction of Basin groundwater movement. This flow continues generally from east to west to a pumping trough in the western portion of the Basin, as well as northeast to southwest, exiting through Whittier Narrows. The simulation for 2024–25 also shows localized pumping depressions in the Baldwin Park area, which are expected to be created by continuous pumping from groundwater extraction wells associated with the BPOU contaminant cleanup project to contain and control groundwater contaminant movement. Contaminated groundwater from those wells is treated at several treatment facilities, and the DDWpermitted water is provided for potable use. Importantly, Figure 16 (see Appendix F) shows the net increase in the groundwater elevations throughout the Basin as the result of the replenishment of additional untreated imported water attributed to the RDA deliveries. Figure 16 (see Appendix F) indicates groundwater elevations may be about two feet higher in most portions of the Basin—directly benefiting Producers by stabilizing energy costs to produce groundwater and well pump efficiency. # SIMULATE IMPACTS OF GROUNDWATER PUMPING ON CONTAMINANT MIGRATION Simulations similar to the ones described above indicate that pumping from USEPA-mandated cleanup projects as managed by Watermaster helps to control and contain contaminant migration. Groundwater quality data collected during 2019–20 and projected quality data for 2024–25 were entered into the groundwater model for the contamination migration studies. The computer model is used to simulate how the flow of water would affect the migration of contamination. The simulation showed that changes in groundwater flow did not have major impacts on the migration of contaminants (refer to Figures 14 and 15 in Appendix F). ### **GROUNDWATER CLEANUP PROJECTS** Watermaster coordinates and provides technical assistance on many cleanup projects in the Basin. Although the cleanup facilities are owned and operated by local water utilities. Watermaster's involvement includes coordinating proposed USEPA cleanup programs to ensure, to the extent feasible, that treated water is put to beneficial use within the Basin and that projects are consistent with the Judgment. ### **REVIEW OF SECTION 28 APPLICATIONS** Watermaster reviews every proposal to construct, destroy, or modify a well or build a treatment plant pursuant to Section 28 of its Rules and Regulations. Watermaster's review ensures that any new or increased extractions from the Basin or any changes in production patterns are consistent with contamination cleanup efforts and will not adversely affect Basin water quality. In conjunction with the evaluation of an application to construct a new well or a treatment facility, Watermaster uses a computer model to predict the potential future impacts of each project on contaminant migration and Basin cleanup. ### BASIN CLEANUP PROJECTS/USEPA OPERABLE UNIT PLANS The USEPA established Operable Units for the various areas within the Basin that have been contaminated and require groundwater cleanup. The Operable Units are Area 3 (Alhambra area), Baldwin Park, El Monte, Puente Valley, South El Monte, and Whittier Narrows (see Figure 11). USEPA has established a methodical cleanup process that includes a review of the extent of contamination (Remedial Investigation), development of cleanup alternatives (Feasibility Study), and selection of the most appropriate cleanup plan (Proposed Plan). Following these activities, the USEPA issues a report identifying the agreed-on cleanup plan (Record of Decision). Subsequently, the project facilities are designed and constructed. With USEPA plans generally in place, Watermaster continues to work with affected Producers, Responsible Parties, and others to implement solutions that provide effective cleanup, conform to the USEPA plans, and use the treated water to meet local water supply needs. ### DETAILS ON EACH OPERABLE UNIT This Five-Year Plan describes each of the Operable Units along with the USEPA proposed cleanup plan. (A detailed description of the history and treatment facilities associated with each of the Operable Units is included in Appendix E.) In addition, Appendix A identifies current and projected groundwater production over the next five years, to address the contamination and to implement the cleanup plans. In areas where the groundwater supply has been affected by contamination, Watermaster works with affected Producers and other local water agencies to implement cleanup as quickly as possible, with or without the cooperation of the Responsible Parties. Watermaster and affected Producers continue to seek cost recovery from the Responsible Parties for any cleanup costs they incur. ### OTHER WATER QUALITY PLANNING AND ACTIONS ### WATER QUALITY PROTECTION PLAN Watermaster's Water Quality Protection Plan provides early warning to Producers before their wells are found to have contaminant levels that exceed drinking water quality standards. The Plan also contains pre-analyzed suggestions to the Producers for responding to the presence of contaminants. ### LANDFILL INSPECTIONS Watermaster routinely conducts on-site inspections of area landfills to ensure they are operated in a way that does not allow contaminants to seep into the ground-water. Watermaster reports any violations of Waste Discharge Requirements to the Regional Board for enforcement. # IDENTIFY AND REDUCE POTENTIAL SOURCES OF CONTAMINATION AND COOPERATE WITH THE REGIONAL WATER QUALITY CONTROL BOARD Since 1993, Watermaster has obtained information from the Regional Board about sources of VOC contamination in the Basin as part of the Regional Board's investigations of potential contaminated sites. The information includes a description of all potential sources of contamination investigated by the Regional Board, including: - Maps showing the location of all investigation sites. - Available cause-and-effect relationships between pollution sources and contaminated wells. - Plans and tentative schedules to abate the source of pollution and to clean up the soil and water. Watermaster has reviewed a large amount of information gathered in Regional Board files and entered it into a database. This information is used in Watermaster's Section 28 process to help evaluate changes in pumping practices in relation to known contamination sources. # WATER SUPPLY AND DROUGHT MANAGEMENT PLANNING AND ACTIONS The Main San Gabriel Groundwater Basin is very complex, covering 167 square miles, and has the capacity to hold about 2.8 trillion gallons of water. Water enters the Basin from countless natural and man-made locations and is extracted by over 200 wells operated by dozens of independent Producers. Watermaster conducts special studies to identify projected water demands and to increase understanding of the Basin so it can be managed in a way that preserves and improves water supply and quality. In addition, Watermaster routinely reviews available
data and is prepared to construct new monitoring wells to obtain supplemental water level and water quality data to better manage the Basin. As a result of these activities, and the cooperative activities with the Regional Board (noted above), ongoing VOC or perchlorate contamination has been eliminated, and the focus is now on cleanup activities. Watermaster coordinates and maintains records on production, stormwater, untreated imported water deliveries for groundwater replenishment, and impacts on the groundwater levels throughout the Basin, particularly at the Baldwin Park Key Well. In that capacity, Watermaster has coordinated deliveries of untreated imported water into Cyclic Storage accounts and implemented the RDA assessment, which is used to purchase untreated imported water to augment stormwater replenishment. Watermaster has developed a 3D computer model, which is used to identify the groundwater levels throughout the Basin, including wells in which water supply reliability may be impacted by decreasing groundwater levels. Throughout the upcoming five years, Watermaster will maintain records on existing and proposed water system interconnections, water levels in production wells, and Producer plans to develop new sources of supply in anticipation of prolonged dry periods. # SERVICES AND ASSISTANCE TO PRODUCERS TO MEET WATER NEEDS Watermaster has been advised that Producers propose to construct four new wells and two treatment plants during the next five years. Watermaster will continue providing the following services to assist Producers in meeting water demand: - Investigate all new or increased water extractions. - Provide computer modeling and technical support on treatment issues concerning the impact of extractions on contaminant migration. - Prioritize areas requiring further investigation, and coordinate with Producers on water supply modifications. - Direct changes in pumping or treatment as necessary. # INTRODUCTION AND BACKGROUND ON WATER SUPPLY AND DROUGHT MANAGEMENT PLANNING AND ACTIONS Historical Basin management practices encouraged Producers to pump local groundwater instead of relying on treated imported water to address water demands in excess of Producers' water rights. Under normal conditions, Watermaster quantifies groundwater production in excess of Producers' water rights and arranges to have an equal amount of untreated imported water delivered to replenish the over-production from the Basin at a "Full Service" untreated water rate. **Wide-Ranging Long-Term Water Supply Management Tools.** In response to the long-term drought conditions, Watermaster has implemented wide-ranging additional new tools to more intensely manage Basin groundwater supplies, refill the Basin, and ensure long-term water supply reliability. These new drought management tools are described in the following pages. ### THREE-YEAR PURCHASED WATER PLAN Watermaster annually prepares the "Three-Year Purchased Water Plan," in which it quantifies the amount of untreated imported water that will be purchased from each of the three municipal water districts within the San Gabriel Valley and delivered to replenish groundwater supplies within the Basin. Untreated imported water deliveries will be made to: - 1) augment the lack of local stormwater replenishment through the Water Resource Development program, - 2) increase the amount of water held in Producer Cyclic Storage accounts, - 3) satisfy the prior year's Replacement Water obligation, and - 4) support other programs negotiated with Watermaster. Recognizing the quantity of untreated imported water anticipated to be delivered in the ensuing three years aids Watermaster's management of groundwater levels and supplies. # CONTINUED IMPLEMENTATION OF WATER RESOURCE DEVELOPMENT ASSESSMENT (RDA) PROGRAM Watermaster developed the Supplemental Water Stormwater Augmentation Program (RDA) to help manage Basin water supplies under potential "worst case" hydrologic conditions, which is assumed to be three consecutive five-year droughts with the same hydrologic conditions as the recent five years of drought experienced from 2011–12 through 2015–16. RDA generates revenue to purchase untreated imported replenishment water for stormwater augmentation so the Key Well elevation can be maintained above 180 feet by the end of the tenth year of a "worst-case" 15-year drought cycle. Watermaster uses the RDA funds to purchase untreated imported water to replenish the Basin for the "general benefit" of all Producers within the Basin. Unlike the original RDA, which is a Watermaster pre-purchase of Replacement Water, the Supplemental Water RDA will supplement local stormwater replenishment and allow no "right of recovery" using a water right by any Basin Producer. **RDA** Assessment Will Steadily Increase to \$175 per Acre-Foot. The RDA program began with an initial assessment of \$40 per acre-foot on fiscal year 2016–17 production, and increased to \$105 per acre-foot on fiscal year 2018–19 production, with plans to gradually increase to \$175 per acre-foot on fiscal year 2020–21 production, at which time sufficient revenue to purchase about 40,000 acre-feet of water (representing about a five-foot benefit to Basin groundwater levels) will be generated. ### PROACTIVE MEASURES TO INCREASE CYCLIC STORAGE Both Watermaster and Producers recognize that prolonged drought conditions will adversely impact untreated imported water availability, which is essential to managing the Basin. Consequently, Watermaster has taken proactive measures to encourage Producers to increase the collective amount of water in their Cyclic Storage accounts from about 15,000 acre-feet as of the end of June 2010 to 38,700 acre-feet as of June 2020. # EXTENSIVE OUTREACH TO PROMOTE RETAIL WATER CONSERVATION For many years, Watermaster has worked with stakeholders across the Basin to encourage consumer-based conservation efforts to reduce groundwater production. After Watermaster staff, Board, and an Ad Hoc Committee carefully reviewed communication and education needs, Watermaster selected a consultant and initiated an expanded Basin Outreach Program focusing on basin-wide and San Gabriel River Watershed supply sources. The goal is to help the public understand critical regional water issues, including how the watershed and Basin work, what makes the Basin unique, and why a wet year in Northern California does not necessarily translate into robust water supplies in the Basin. # WORKING TOWARD MASSIVE INCREASE IN RECYCLED WATER USE Watermaster is working with Sanitation Districts of Los Angeles County, MWD, and others to pursue a large supply of 60,000 to 80,000 acre-feet per year of treated recycled water for Basin replenishment. ### INCREASE REPLENISHMENT Watermaster is working with a range of stakeholders to implement tighter coordination and management to allow replenishment of imported water even during rainy periods. It is also finding new opportunities and incentives to deliver untreated imported water for Basin replenishment. ### MORE FLEXIBLE FINANCIAL TOOLS Watermaster has instituted new, more flexible financial tools to increase water imports, such as pre-purchase of water, and is evaluating others, including mid-year assessments. # DEVELOPING AND IMPLEMENTING STORAGE AND EXPORT PROGRAMS Watermaster has developed criteria for new water storage and export programs, implementing them for the first time in 2015. These programs will continue in future years. ### STORMWATER CAPTURE Watermaster is participating in a multiyear study led by Las Virgenes Municipal Water District that is investigating the potential for collecting urban runoff and stormwater and recycling it into a usable new water supply by using existing capacity in wastewater treatment plants. ### PROTECT WATER RIGHTS Watermaster worked to protect water rights associated with legislation and expansion of the National Recreation Area along the San Gabriel River. # PROJECTED GROUNDWATER DEMANDS PRODUCER ESTIMATES Section 28 directs each Producer to submit a report to Watermaster detailing its projected water demands and water production requirements over the following five years. Projections were received from 18 Producers (all municipal water suppliers), accounting for about 72% of the groundwater production from the Basin. Water production decreased compared to the prior year and remains significantly lower than the long-term average due in part to consumer water conservation. For those Producers who did not submit projections, Watermaster provided an estimate based on the assumption that each Producer had an aggregate projected growth rate that was the same as those Producers who did submit projections. Projected groundwater production is shown in Appendix A. Figure 10 shows the total projected and historical groundwater production from the Basin since 2013–14. ### UPGRADE OF GROUNDWATER MODEL TO 3D The long-used and highly effective 2D groundwater model was updated during a multiyear process to 3D. It will provide advanced capabilities for identifying existing conditions, designing programs, and testing outcomes. The groundwater model will be useful for virtually every aspect of Basin management, from recycled water development to water quality evaluations to well performance analysis. ### AQUIFER PERFORMANCE TESTS Watermaster has developed a groundwater flow model for the entire Basin that assists in evaluating the potential impacts of changes in groundwater production. Although Watermaster completed its three-year Aquifer Performance Test investigation, additional tests will be conducted as required for Section 28 applications or for other needs. A tabulation of potential Aquifer Performance Test investigation sites is included in Appendix D. The sites identified include a production well and at least one monitoring well. The tests provide information on the characteristics of the aquifer such as transmissivity, hydraulic conductivity, and
coefficient of storage. The information gathered on aquifer characteristics will support cleanup activities, including groundwater model development and calibration (see Appendix D). # **DIRECTORY TO APPENDICES** The Following Appendices Are Found in This Section: - A. Projected Groundwater Demands from 2020–21 to 2024–25 - B. Simulated Changes in Groundwater Elevations at Wells or Wellfields in Main San Gabriel Basin - C. Highlights of Volatile Organic Compounds and Nitrate Concentrations, and Wells Vulnerable to Contamination - D. Potential Sites for Aquifer Performance Tests - E. Summary of Treatment Facility Activity in the Main San Gabriel Basin - F. Simulated Basin Groundwater Contours 2019–20 and 2024–25 (Figures 14 and 15), Simulated Groundwater Elevation Changes Between FY 2019-20 and FY 2024-25 (Figure 16), VOC Plume Map in BPOU and Perchlorate Plume Map in BPOU (Figures 17 and 18) Δ # APPENDIX A. PROJECTED GROUNDWATER DEMANDS FROM 2020-21 to 2024-25 APPENDIX A PROJECTED GROUNDWATER DEMANDS FROM 2020-21 TO 2024-25 | RECORDATION | WELL | WELL CAP | ACITY | 2019-20 | | PROJECTED G | ROUNDWATER | R DEMANDS | | |--------------------|------------------|-----------------|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | 9447 SAN GABRIE | L CANYON LLC (VI | ETNAMESE AMER | RICAN BUDE | HIST TEMPLE) (1 |) | | | | | | 8000191 | NA | NA | NA | 5.95 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | SUBTOTAL | | NA | NA | 5.95 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | ADAMS RANCH M | UTUAL WATER CO | MPANY (CALIFOR | NIA AMERIC | CAN WATER COM | PANY) | | | | | | 1902106 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902689
8000182 | 2 3 | NA | NA
NA | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | SUBTOTAL: | 3 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ALHAMBRA, CITY | OF (1) | IVA | INA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ALIIAMBIKA, CITT | OI (I) | | | | | | | | | | 1900010 | MOELR (8) | 3,387 | 2,100 | 1,414.80 | 1,548.87 | 1,607.02 | 1,667.37 | 1,729.70 | 1,794.90 | | 1900011
1900012 | 9
10 | 798
NA | 495
NA | 7.66
0.00 | 8.39
0.00 | 8.70
0.00 | 9.03
0.00 | 9.36
0.00 | 9.72
0.00 | | 1900012 | 12 | 807 | 500 | 7.90 | 8.65 | 8.97 | 9.31 | 9.66 | 10.02 | | 1900014 | 13 | 1,048 | 650 | 251.13 | 274.93 | 285.25 | 295.96 | 307.03 | 318.60 | | 1900015 | 14 | 1,532 | 950 | 350.06 | 383.23 | 397.62 | 412.55 | 427.98 | 444.11 | | 1900016 | 15 | 1,774 | 1,100 | 1,597.43 | 1,748.81 | 1,814.46 | 1,882.60 | 1,952.98 | 2,026.60 | | 1900017 | 2 LON | 1,589 | 985 | 1,038.88 | 1,137.33 | 1,180.03 | 1,224.34 | 1,270.11 | 1,317.99 | | 1900018
1902789 | GARF
1 LON | NA
1,613 | NA
1,000 | 0.00
1,520.12 | 0.00
1,664.17 | 0.00
1,726.65 | 0.00
1,791.49 | 0.00
1,858.47 | 0.00
1,928.52 | | 1902769 | 11
11 | 1,032 | 640 | 235.33 | 257.63 | 267.30 | 277.34 | 287.71 | 298.55 | | 1903097 | 7 | 1,250 | 775 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 14,832 | 9,195 | 6,423.31 | 7,032.00 | 7,296.00 | 7,570.00 | 7,853.00 | 8,149.00 | | AMARILLO MUTUA | AL WATER COMPA | NY (SAN GABRIEL | VALLEY W | ATER COMPANY |) (2) | | | | | | 1900791 | SOUTH (1) | 644 | 399 | 97.58 | 409.65 | 426.21 | 443.42 | 452.29 | 461.33 | | 1900792 | NORTH (2) | 424 | 263 | 46.80 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | | SUBTOTAL: | | 1,068 | 662 | 144.38 | 410.41 | 426.97 | 444.18 | 453.05 | 462.09 | | ANDERSON, RAY | L. AND HELEN | | | | | | | | | | 8000085 | NA | 18 | 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 18 | 11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | ARCADIA, CITY OF | (2) | | | | | | | | | | 1901013 | 1 LON | 1,613 | 1,000 | 890.15 | 873.00 | 856.00 | 839.00 | 822.00 | 806.00 | | 1901014 | 2 LON | 1,613 | 1,000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901015 | 1 BAL | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902077
1902078 | 1 CAM
2 CAM | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1902084 | 2 LGY | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902358 | 1 STJ | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902791 | 2 BAL | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902854 | 1 PEC | 5,968 | 3,700 | 4,591.22 | 4,500.00 | 4,412.00 | 4,325.00 | 4,240.00 | 4,157.00 | | 8000127 | 1 LO | 4,516 | 2,800 | 25.94 | 2,783.00 | 2,728.00 | 2,675.00 | 2,622.00 | 2,571.00 | | 8000177 | 2 STJ | 1,613 | 1,000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000213
8000214 | 3 CAM
3 LGY | 4,355
2,903 | 2,700
1,800 | 4,253.52
1,811.08 | 4,170.00
1,775.00 | 4,088.00
1,741.00 | 4,008.00
1,706.00 | 3,929.00
1,673.00 | 3,852.00
1,640.00 | | SUBTOTAL: | | 22,582 | 14,000 | 11,571.91 | 14,101.00 | 13,825.00 | 13,553.00 | 13,286.00 | 13,026.00 | | ARCADIA RECLAN | IATION (1) | | | | | | | | | | 8000229 | NA | NA | NA | 56.00 | 58.00 | 58.00 | 58.00 | 58.00 | 58.00 | | SUBTOTAL: | | NA | NA | 56.00 | 58.00 | 58.00 | 58.00 | 58.00 | 58.00 | | ATTALLA, MARY L | | | | | | | | | | | 8000119 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RECORDATION | WELL | WELL CAPA | 1CITY | 2019-20 | | PROJECTED GF | COUNDWATER | DEMANDS | | |--------------------|------------------|----------------|-------------|----------------|------------------|------------------|------------------|------------------|------------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | 1 | | <u> </u> | | | 1 | | , <u></u> | | AZUSA, CITY OF (A | ZUSA AGRICULTU | JRAL WATER COM | IPANY, AZU | SA VALLEY WATE | R COMPANY) (2 | 2) | | | | | 1902533 | 5 (1) | 1,613 | 1,000 | 1,489.96 | 1,200.00 | 1,200.00 | 1,200.00 | 1,200.00 | 1,200.00 | | 1902535 | 6 (3) | 4,839 | 3,000 | 49.40 | 550.00 | 550.00 | 550.00 | 550.00 | 550.00 | | 1902536 | GENESIS 1 (4) | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902537 | GENESIS 2 (5) | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902538
8000072 | GENESIS 3 (6) | NA
4,839 | NA
3,000 | 0.00
653.20 | 0.00
1,500.00 | 0.00
1,500.00 | 0.00
1.500.00 | 0.00
1,500.00 | 0.00
1,500.00 | | 8000072 | 1 (7)
3 (8) | 4,678 | 2,900 | 2,351.49 | 2,380.00 | 2,380.00 | 2,380.00 | 2,380.00 | 2,380.00 | | 1902457 | 2 (1 NORTH) | 3,226 | 2,900 | 1,488.61 | 1,370.00 | 1,370.00 | 1,370.00 | 1,370.00 | 1,370.00 | | 1902458 | 4 (2 SOUTH) | 4,516 | 2,800 | 1,365.26 | 2,160.00 | 2,160.00 | 2,160.00 | 2,160.00 | 2,160.00 | | 1902113 | AVWC 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902114 | AVCW 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902115 | 8 (AVWC 4) | 3,065 | 1,900 | 163.91 | 300.00 | 300.00 | 300.00 | 300.00 | 300.00 | | 1902116 | 7 (AVWC 5) | 1,613 | 1,000 | 78.65 | 550.00 | 550.00 | 550.00 | 550.00 | 550.00 | | 1902117 | 9 (AVWC 6) | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902425 | AVWC 7 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000103 | 10 (AVWC 8) | 4,194 | 2,600 | 108.86 | 70.00 | 70.00 | 70.00 | 70.00 | 70.00 | | 8000178 | 11 | 2,581 | 1,600 | 1,913.19 | 1,600.00 | 1,600.00 | 1,600.00 | 1,600.00 | 1,600.00 | | 8000179 | 12 | 2,420 | 1,500 | 1,811.74 | 1,450.00 | 1,450.00 | 1,450.00 | 1,450.00 | 1,450.00 | | 1903119 | VULCAN | NA
NA | NA | 28.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 13,872 | 8,600 | 11,502.48 | 13,130.00 | 13,130.00 | 13,130.00 | 13,130.00 | 13,130.00 | | AZUSA ASSOCIATE | S LLC (COVELL, I | ET AL) | | | | | | | | | 1900390 | DALTON | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | B & B RED-I-MIX Co | ONCRETE INC. | | | | | | | | | | 1902589 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BANKS, GALE & VI | CKI (1) | | | | | | | | | | 1900415 | NA | 560 | 347 | 26.65 | 32.00 | 32.00 | 32.00 | 32.00 | 32.00 | | SUBTOTAL | | 560 | 347 | 26.65 | 32.00 | 32.00 | 32.00 | 32.00 | 32.00 | | BASELINE WATER | COMPANY | | | | | | | | | | 1901200 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901200 | 2 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901201 | 3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BEVERLY ACRES I | MUTUAL | | | | | | | | | | 8000004 | ROSE HILLS | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BIRENBAUM, MAX | | | | | | | | | | | 8000005 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | BROOKS, GIFFORD |) JR. | | | | | | | | | | 1902144 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | RECORDATION | WELL | WELL CAP | ACITY | 2019-20 | | PROJECTED GI | ROLINDWATER | DEMANDS |] | |---------------------|-----------------|------------------|-------------|--------------------|------------------|------------------|------------------|------------------|------------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | HOMBER | 147-WILL | AURE-FEET | GFIVI | | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | | | | | | | | | | BURBANK DEVELO | PMENT COMPA | NY | | | | | | | | | 1900093 | BURB | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | | CALIFORNIA-AMERI | CAN WATER CO | | YSTEM (2) | | | | | | | | OALII ORIVIA AIIILI | | om Annoonie | 1012 (2) | | | | | | | | 1900354 | STA FE | 1,694 | 1,050 | 139.84 | 144.46 | 144.87 | 145.31 | 145.75 | 146.20 | | 1900355 | B V | 2,339 | 1,450 | 257.20 | 265.69 | 266.46 | 267.27 | 268.08 | 268.89 | | 1900356
1900357 | MT AVE
LAS L | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1900357 | FISH C | 484 | 300 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902907 | WILEY | 2,420 | 1,500 | 2,203.53 | 2,276.27 | 2,282.84 | 2,289.79 | 2,296.73 | 2,303.68 | | 1903018 | CR HV | 2,258 | 1,400 | 1,201.05 | 1,240.70 | 1,244.28 | 1,248.07 | 1,251.85 | 1,255.64 | | 8000139 | ENCTO | 2,903 | 1,800 | 649.73 | 671.18 | 673.12 | 675.16 | 677.21 | 679.26 | | 8000140 | LASL 2 | 2,258 | 1,400 | 984.49 | 1,016.99 | 1,019.93 | 1,023.03 | 1,026.13 | 1,029.23 | | 1900497 | BACON | 484 | 300 | 1.63 | 1.68 | 1.69 | 1.69 | 1.70 | 1.70 | | 8000216 | B V 2 | 2,661 | 1,650 | 270.50 | 279.43 | 280.24 | 281.09 | 281.94 | 282.79 | | 8000237 | LEMON | 242 | 150 | 321.02 | 331.62 | 332.57 | 333.59 | 334.60 | 335.61 | | SUBTOTAL: | | 17,743 | 11,000 | 6,028.99 | 6,228.00 | 6,246.00 | 6,265.00 | 6,284.00 | 6,303.00 | | CALIFORNIA-AMERI | CAN WATER CO | OMPANY/SAN MARII | NO SYSTEM | 1 (2) | | | | | | | 1900917 | HALL | NA | NIA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | GUESS | | NA
NA | | | | | | | | 1900918
1900919 | MISVW | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1900919 | MISVW | 1,774 | 1,100 | 385.49 | 411.30 | 412.54 | 413.78 | 415.01 | 416.25 | | 1900921 | RIC-1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900922 | RIC-2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900923 | IVR-1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900924 | MAR-1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900925 | MAR-2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900926 | GRAND | 1,936 | 1,200 | 266.50 | 284.34 | 285.20 | 286.05 | 286.91 | 287.77 | | 1900927 | ROSE | NA NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900934 | ROAN | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900935 | LONG | 1,548 | 960 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901441 | BR-1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902424 | HOWL | 1,048 | 650 | 259.80 | 277.19 | 278.03 | 278.86 | 279.70 | 280.53 | | 1902787 | BR-2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902867 | IVR-2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1903019 | MAR-3 | 1,936 | 1,200 | 1,220.93 | 1,302.67 | 1,306.59 | 1,310.52 | 1,314.44 | 1,318.36 | | 1903059 | DELMAR | 1,452 | 900 | 975.72 | 1,041.05 | 1,044.18 | 1,047.31 | 1,050.45 | 1,053.58 | | 8000175 | HALL-2 | 1,936 | 1,200 | 1,612.62 | 1,720.59 | 1,725.77 | 1,730.95 | 1,736.13 | 1,741.31 | | 8000222 | RIC-3 | 2,581 | 1,600 | 1,816.26 | 1,937.86 | 1,943.69 | 1,949.53 | 1,955.36 | 1,961.20 | | 8000182 | ADA-3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 11,630 | 8,810 | 6,537.32 | 6,975.00 | 6,996.00 | 7,017.00 | 7,038.00 | 7,059.00 | | CALIFORNIA COUNT | TRY CLUB (1) | | | | | | | | | | 1902529 | CLUB | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902529 | ARTES | 1,129 | 700 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1903084 | SYC | 1,290 | 800 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 2,420 | 1,500 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CALIFORNIA DOMES | STIC WATER CO | OMPANY (2) | | | | | | | | | 4004404 | 2 | NIA | NIA | 2.079.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901181 | 2
2A | NA
4 830 | NA
2 000 | 2,078.62
906.34 | 0.00
3,467.47 | 0.00
3,467.47 | 0.00
3,467.47 | 0.00
3,797.71 | 0.00
3,797.71 | | 8000236 | 2A
1-E | 4,839 | 3,000 | 906.34 | 3,467.47
0.00 | 3,467.47
0.00 | 3,467.47
0.00 | 3,797.71
0.00 | 3,797.71 | | 1901182
1901183 | 1-⊑
5 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901185 | 5
13-N | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901165 | 6 | 6,452 | 4,000 | 702.72 | 816.31 | 816.31 | 816.31 | 894.06 | 894.06 | | 1902967 | 3 | 7,259 | 4,000 | 6,726.20 | 7,813.47 | 7,813.47 | 7,813.47 | 8,557.62 | 8,557.62 | | 1903081 | 8 | 4,839 | 3,000 | 1,415.08 | 1,643.82 | 1,643.82 | 1,643.82 | 1,800.38 | 1,800.38 | | 8000100 | 5A | 6,452 | 4,000 | 5,082.09 | 5,903.60 | 5,903.60 | 5,903.60 | 6,465.85 | 6,465.85 | | 8000174 | 14 | 5,323 | 3,300 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000174 | 10 | 5,323
8,065 | 5,000 | 1,166.72 | 1,355.32 | 1,355.32 | 1,355.32 | 1,484.40 | 1,484.40 | | 1900092 | NA | NA | 5,000
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 43,228 | 26,800 | 18,077.77 | 21,000.00 | 21,000.00 | 21,000.00 | 23,000.00 | 23,000.00 | | | | | | | | | | | | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED GF | ROUNDWATER | DEMANDS | 1 | |--------------------|---------------|-----------------------|----------|-------------------|--------------|--------------|--------------|--------------|---------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | , | | <u> </u> | | | • | | • | • | | | CARRIER CORPORA | TION (1) | | | | | | | | | | | | | | 0.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | | SUBTOTAL: | | | | 0.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | | CEDAR AVENUE MU | TUAL WATER | COMPANY | | | | | | | | | 1901411 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902783 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CEMEX CONSTRUCT | TION MATERIAL | LS L.P. (AZ-TWO INC.) |) | | | | | | | | 1900038 | 2 | 2,305 | 1,429 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 2,305 | 1,429 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CHAMPION MUTUAL | WATER COMP | PANY (SAN GABRIEL | VALLEY W | ATER COMPANY) | | | | | | | 1900908 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902816 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000121 | 3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CHEVRON USA | | | | | | | | | | | 1900250 | TEMP1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CITRUS VALLEY MEI | DICAL CENTER | R, QUEEN OF THE VAI | LLEY CAM | IPUS (QUEEN OF TH | E VALLEY HO | SPITAL) (1) | | | | | 8000138 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CLAYTON MANUFAC | TURING COMP | PANY | | | | | | | | | 1901055 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000170 | MW-4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | COLLISON, E.O. | | | | | | | | | | | 1902968 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CORCORAN BROS. | | | | | | | | | | | 1902814 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | COUNTY SANITATIO | N DISTRICT NO | D. 18 (1) | | | | | | | | | 8000008 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000009 | 3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000104
8000105 | LE 1
LE 2 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 8000105 | LE 3 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000100 | LE 4 | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000128 | EO8A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000129 | E09A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000130 | E10A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000131 | E11A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000141 | EX1 | NA | NA | 0.37 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | | 8000142 | EX2 | NA | NA | 0.13 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | | 8000143 | EX3 | NA | NA | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | | 8000144 | EX4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | RECORDATION | WEII | WELLCAR | ACITY 1 | 2019-20 | | PROJECTED GI | ROHNDWATER | DEMANDS | 1 | |-----------------------|---------------|-----------|----------|-----------------------|--------------|--------------|--------------|--------------|--------------| | RECORDATION
NUMBER | WELL
NAME | ACRE-FEET | GPM | 2019-20
PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | 1 AT UNIT | ACKE-FEET | GFIVI | . Account | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | | | | | | | | | | 8000153 | E16A | NA | NA | 0.62 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | 8000154 | E17A | NA | NA | 4.09 | 7.40 | 7.40 | 7.40 | 7.40 | 7.40 | | 8000155 | E18A | NA | NA | 0.56 | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | | 8000156 | E19A | NA
NA | NA | 0.88 | 1.45 | 1.45 | 1.45 | 1.45 | 1.45 | | 8000173
8000161 | E20A
E01R | NA
NA | NA
NA | 0.82
0.09 | 1.51
0.20 | 1.51
0.20 | 1.51
0.20 | 1.51
0.20 | 1.51
0.20 | | 8000161 | E03R | NA
NA | NA
NA | 0.09 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | | 8000163 | E05R | NA
NA | NA | 0.54 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | 8000164 | E07R | NA | NA | 1.06 | 1.69 | 1.69 | 1.69 | 1.69 | 1.69 | | 8000165 | E02R | NA | NA | 1.09 | 1.96 | 1.96 | 1.96 | 1.96 | 1.96 | | 8000166 | E04R | NA | NA | 0.30 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | | 8000167 | E06R | NA | NA | 0.16 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | | 8000168 | E08R | NA | NA | 0.41 | 0.70 | 0.70 | 0.70 |
0.70 | 0.70 | | NA | WRP FL E | NA | NA | 0.00 | 80.51 | 80.51 | 80.51 | 80.51 | 80.51 | | SUBTOTAL: | | NA | NA | 11.19 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | COVINA, CITY OF | | | | | | | | | | | 1901685 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901686 | 2 | 968 | 600 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901687 | 3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 968 | 600 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | COVINA IRRIGATIN | G COMPANY (2) | | | | | | | | | | 1900881 | CONTR | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900882 | 3 BAL | 2,903 | 1,800 | 1,073.59 | 1,200.00 | 1,300.00 | 1,300.00 | 1,600.00 | 1,800.00 | | 1900883 | 2 BAL | 2,581 | 1,600 | 62.56 | 750.00 | 1,000.00 | 1,200.00 | 1,200.00 | 1,200.00 | | 1900885 | 1 BAL | 2,097 | 1,300 | 993.73 | 1,000.00 | 1,200.00 | 1,600.00 | 1,600.00 | 1,600.00 | | 21900880 | VALEN | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 7,581 | 4,700 | 2,129.88 | 2,950.00 | 3,500.00 | 4,100.00 | 4,400.00 | 4,600.00 | | CREVOLIN, A.J. | | | | | | | | | | | 8000011 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | CROWN CITY PLAT | ING COMPANY | | | | | | | | | | 8000012 | 01 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | DAVIDSON OPTRO | NICS INC. | | | | | | | | | | 8000013 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | DAWES, MARY K. | | | | | | | | | | | 1902952 | 04 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | DEFALCO, JOHN & | CAROLE | | | | | | | | | | 8000194 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | DEL RIO MUTUAL V | WATER COMPAN' | Y (1) | | | | | | | | | 1900331 | BURKE | 261 | 162 | 98.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | 1900332 | KLING | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 261 | 162 | 98.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | | RECORDATION | WELL | WELL CAP | ACITY | 2019-20 | | PROJECTED GF | COUNDWATER | DEMANDS | | |--|--|--|---|---|---|---|--|--|--| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | <u>. </u> | | | | <u>"</u> | <u>_</u> | | <u> </u> | | | | DRIFTWOOD DAIRY | | | | | | | | | | | 1902924 | 01 | 298 | 185 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 298 | 185 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | DUNNING, GEORGE | | | | | | | | | | | 1900091 | 1910 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | EAST PASADENA W | ATER COMPAN | Y, LTD. (2) | | | | | | | | | 1901508
8000217 | 9
11 | 2,420
2,420 | 1,500
1,500 | 177.99
1,471.22 | 180.49
1,491.88 | 180.58
1,492.62 | 180.67
1,493.37 | 180.76
1,494.11 | 180.85
1,494.86 | | SUBTOTAL: | | 4,839 | 3,000 | 1,649.21 | 1,672.37 | 1,673.20 | 1,674.04 | 1,674.87 | 1,675.71 | | EL MONTE, CITY OF | (1) | | | | | | | | | | 1901692 1901693 1901694 1901695 1901699 1901700 1902612 1903137 8000066 8000101 8000231 8000232 8000233 SUBTOTAL: EL MONTE CEMETE 8000017 SUBTOTAL: FRUIT STREET WAT | NA | 1,532
807
NA
NA
2,420
NA
2,742
NA
4,839
290
274
403
13,307 | 950
500
NA
NA
1,500
NA
1,700
NA
3,000
180
170
250
8,250 | 659.20
0.00
0.00
0.00
594.28
0.00
0.00
54.08
0.00
0.00
231.74
246.43
437.38
2,223.11 | 743.23
0.00
0.00
0.00
670.04
0.00
0.00
60.97
0.00
0.00
261.28
277.84
493.13
2,506.50 | 758.10
0.00
0.00
0.00
683.44
0.00
0.00
62.19
0.00
0.00
266.51
283.40
503.00
2,556.64 | 773.26 0.00 0.00 0.00 697.11 0.00 0.00 63.44 0.00 0.00 271.84 289.07 513.06 2,607.77 | 788.72 0.00 0.00 0.00 711.05 0.00 64.71 0.00 0.00 277.27 294.85 523.32 2,659.92 | 804.50
0.00
0.00
0.00
725.27
0.00
0.00
0.00
0.00
282.82
300.75
533.79
2,713.12 | | 1901199 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | GATES, JAMES RICH | HARD (1) | | | | | | | | | | 8000215 | NA | NA | NA | 0.85 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | SUBTOTAL: | | NA | NA | 0.85 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | GLENDORA, CITY O | , | | | | | | | | | | 1900826
1900827
1900828
1900829
1900830
1900831
1901523
1901524
1901525
1901526
8000003
8000149
8000184 | 11-E
12-E
10-E
8-E
9-E
7-G
1-E
4-E
3-G
2-E

5-E | 1,452
3,226
1,048
2,742
2,742
NA
NA
NA
NA
2,903
1,290 | 900
2,000
650
1,700
1,700
NA
NA
NA
S00
NA
1,800 | 28.74 3,477.57 50.29 1,671.74 1,806.21 0.00 0.00 0.00 289.18 0.00 2,280.28 451.84 | 30.87
3,734.92
54.01
1,795.45
1,939.87
0.00
0.00
0.00
310.58
0.00
2,449.02
485.28 | 30.87
3,734.92
54.01
1,795.45
1,939.87
0.00
0.00
0.00
310.58
0.00
2,449.02
485.28 | 30.87
3,734.92
54.01
1,795.45
1,939.87
0.00
0.00
0.00
310.58
0.00
2,449.02
485.28 | 30.87
3,734.92
54.01
1,795.45
1,939.87
0.00
0.00
0.00
0.00
310.58
0.00
2,449.02
485.28 | 30.87
3,734.92
54.01
1,795.45
1,939.87
0.00
0.00
0.00
310.58
0.00
2,449.02
485.28 | | SUBTOTAL: | | 16,211 | 10,050 | 10,055.85 | 10,800.00 | 10,800.00 | 10,800.00 | 10,800.00 | 10,800.00 | | RECORDATION | WELL | WELLCAR | ACITY | 2019-20 | | PROJECTED G | ROUNDWATER | DEMANDS |] | |--------------------|-----------------|-----------------|-------------|-----------------|----------------|----------------|----------------|----------------|----------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | <u> </u> | | | | <u> </u> | | <u> </u> | - 1 | <u> </u> | | | GOEDERT, LILLIAN | | | | | | | | | | | , | COEDEDI | A1.4 | A | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000027 | GOEDERT | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | GOLDEN STATE WA | ATER COMPANY | (SOUTHERN CALIF | FORNIA WA | TER COMPANY)/SA | N DIMAS DIST | RICT (1) | | | | | 1902148 | BAS-3 | 968 | 600 | 1.42 | 7.22 | 7.25 | 7.28 | 7.30 | 7.33 | | 1902149 | BAS-4 | 1,210 | 750 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902150 | HIGHWAY | 1,129 | 700 | 15.17 | 77.15 | 77.44 | 77.73 | 78.02 | 78.31 | | 1902151 | ART-1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902152 | ART-2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902154
1902266 | L H-2
COL-1 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1902267 | COL-2 | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902268 | COL-4 | 726 | 450 | 0.17 | 0.86 | 0.87 | 0.87 | 0.87 | 0.88 | | 1902269 | COL-5 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902270 | COL-6 | 686 | 425 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902271 | COL-7 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902272 | COL-8 | NA | NA
200 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902286
1902842 | CITY
ART-3 | 323
403 | 200
250 | 154.88
0.11 | 787.70
0.56 | 790.64
0.56 | 793.58
0.56 | 796.53
0.57 | 799.47
0.57 | | 1902042 | MALON | 605 | 375 | 378.84 | 1,926.72 | 1,933.92 | 1,941.12 | 1,948.32 | 1,955.52 | | 8000212 | HIGHWAY 2 | 1,613 | 1,000 | 186.16 | 946.78 | 950.32 | 953.86 | 957.39 | 960.93 | | SUBTOTAL: | | 7,662 | 4,750 | 736.75 | 3,747.00 | 3,761.00 | 3,775.00 | 3,789.00 | 3,803.00 | | GOLDEN STATE WA | ATER COMPANY | (SOUTHERN CALIF | FORNIA WA | TER COMPANY)/SA | N GABRIEL D | ISTRICT (1) | | | | | 1900510 | 1 S G | 1,774 | 1,100 | 1,504.01 | 1,894.72 | 1,901.55 | 1,908.39 | 1,915.22 | 1,922.06 | | 1900511 | 2 S G | 1,452 | 900 | 439.20 | 553.29 | 555.29 | 557.29 | 559.28 | 561.28 | | 1900512 | 2 GAR | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900513 | 1 GAR | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900514 | 3 SAX | 565 | 350 | 2.77 | 3.49 | 3.50 | 3.51 | 3.53 | 3.54 | | 1900515 | 1 SAX | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000146 | 4 SAX | 1,532 | 950 | 3.16 | 3.98 | 4.00 | 4.01 | 4.02 | 4.04 | | 1902144
1902017 | 1 EAR
1 JEF | NA
NA | NA
NA |
0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1902017 | 2 JEF | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902019 | 3 JEF | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902020 | 1 AZU | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902024 | 1 ENC | 1,936 | 1,200 | 670.18 | 844.28 | 847.32 | 850.37 | 853.41 | 856.46 | | 1902027 | 1 PER | 697 | 432 | 61.06 | 76.92 | 77.20 | 77.48 | 77.75 | 78.03 | | 1902030 | 1 GRA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902031 | 2 GID | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902032
1902034 | 1 GID
1 FAR | NA
1,936 | NA
1,200 | 0.00
374.11 | 0.00
471.30 | 0.00
473.00 | 0.00
474.70 | 0.00
476.40 | 478.10 | | 1902035 | 2 ENC | 968 | 600 | 803.33 | 1,012.02 | 1,015.67 | 1,019.32 | 1,022.97 | 1,026.62 | | 1902461 | 2 GRA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902948 | 2 FAR | 1,210 | 750 | 85.82 | 108.11 | 108.50 | 108.89 | 109.28 | 109.67 | | 8000073 | 3 ENC | 1,048 | 650 | 339.53 | 427.73 | 429.28 | 430.82 | 432.36 | 433.90 | | 8000111 | 4 JEF | 2,097 | 1,300 | 622.71 | 784.48 | 787.31 | 790.14 | 792.97 | 795.79 | | 8000221 | 3 GAR | | | 419.82 | 528.88 | 530.79 | 532.70 | 534.60 | 536.51 | | SUBTOTAL: | | 9,891 | 6,132 | 5,325.70 | 6,709.20 | 6,733.40 | 6,757.60 | 6,781.80 | 6,806.00 | | GOULD ELECTRON | ICS INC. AND JO | HNSON CONTROL | .S INC. (1) | | | | | | | | | SEW | NA | NA | 34.48 | 19.90 | 19.90 | 19.90 | 19.90 | 19.90 | | | DEW | NA | NA | 0.00 | 703.80 | 703.80 | 703.80 | 703.80 | 703.80 | | SUBTOTAL: | | NA | NA | 34.48 | 723.70 | 723.70 | 723.70 | 723.70 | 723.70 | | GREEN, WALTER | | | | | | | | | | | 8000027 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000028 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | HANSEN, ALICE | | | | | | | | | | | 8000029 | 2946 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 5551017KL. | | IVA | INA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED G | ROUNDWATER | DEMANDS | | |--------------------|----------------|-------------------|----------------|------------------|------------------|------------------|--------------------|------------------|------------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | -16 | | <u> </u> | | | <u> </u> | <u> </u> | | | HANSON AGGREGA | TES WEST, INC | . (LIVINGSTON-GRA | HAM) (1) | | | | | | | | 1900961 | 1 DUA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900963 | 1 KIN | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901492 | 1 EL | 3,302 | 2,047 | 76.58 | 55.12 | 55.12 | 55.12 | 55.12 | 55.12 | | 1901493
1903006 | 3 EL
4 EL | 4,563
356 | 2,829
221 | 120.10
0.00 | 129.09
0.00 | 129.09
0.00 | 129.09
0.00 | 129.09
0.00 | 129.09
0.00 | | | Temp | NA | NA | 0.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | | SUBTOTAL: | | 8,221 | 5,097 | 196.68 | 214.21 | 214.21 | 214.21 | 214.21 | 214.21 | | HARTLEY, DAVID | | | | | | | | | | | 8000029 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | HEMLOCK MUTUAL | WATER COMPA | ANY (1) | | | | | | | | | 1901178 | NORTH | 219 | 136 | 22.29 | 23.73 | 23.73 | 23.73 | 23.73 | 23.73 | | 1902806 | SOUTH | 516 | 320 | 41.44 | 44.11 | 44.11 | 44.11 | 44.11 | 44.11 | | SUBTOTAL: | | 736 | 456 | 63.73 | 67.84 | 67.84 | 67.84 | 67.84 | 67.84 | | HERMETIC SEAL CO | ORPORATION (1) |) | | | | | | | | | | | NA | NA | 50.68 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | | SUBTOTAL: | | NA | NA | 50.68 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | | INDUSTRY WATERW | VORKS SYSTEM | , CITY OF (2) | | | | | | | | | 1902581 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902582 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902583 | 5TH AVE | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000078 | 3 | 2,016 | 1,250 | 0.00 | 0.00 | 0.00 | 192.00 | 384.00 | 384.00 | | 8000096
8000097 | 4
5 | 2,016
1,936 | 1,250
1,200 | 0.00
1,344.59 | 0.00
1,920.00 | 0.00
1,920.00 | 384.00
1,344.00 | 768.00
768.00 | 768.00
768.00 | | SUBTOTAL: | | 5,968 | 3,700 | 1,344.59 | 1,920.00 | 1,920.00 | 1,920.00 | 1,920.00 | 1,920.00 | | KIYAN, HIDEO | | | | | | | | | | | 1902970 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | LA PUENTE VALLEY | COUNTY WATE | ER DISTRICT (2) | | | | | | | | | 1901459 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901460 | 2 | 1,936 | 1,200 | 1,397.80 | 1,932.00 | 1,932.00 | 1,932.00 | 1,932.00 | 1,932.00 | | 1902859 | 3 | 2,016 | 1,250 | 1,004.70 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | | 8000062
8000209 | 4
5 | NA
2,016 | NA
1,250 | 0.00
1,443.98 | 0.00
2,016.00 | 0.00
2,016.00 | 0.00
2,016.00 | 0.00
2,016.00 | 0.00
2,016.00 | | SUBTOTAL: | | 5,968 | 3,700 | 3,846.48 | 3,952.00 | 3,952.00 | 3,952.00 | 3,952.00 | 3,952.00 | | LA VERNE, CITY OF | | | | | | | | | | | 1902322 | SNIDO | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | LAKIN, KELLY | | | | | | | | | | | 8000158 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | LANDEROS, JOHN | | | | | | | | | | | 8000031 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED GF | ROUNDWATER | DEMANDS | | |--------------------|----------------|-----------------|------------|--------------|--------------|--------------|--------------|--------------|--------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | 17.0 | Ç | - 1 | | | | | | | | | | | | | | | | | | LOS ANGELES, COL | JNTY OF (1) | | | | | | | | | | 1902579 | 1 WHI | 2,710 | 1,680 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902580 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902663
1902664 | 3
4 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1902665 | 5 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902666 | 6 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000070 | 1 SF | 3,349 | 2,076 | 770.53 | 754.22 | 754.22 | 754.22 | 754.22 | 754.22 | | 8000074 | 2 SF | 458 | 284 | 20.32 | 23.85 | 23.85 | 23.85 | 23.85 | 23.85 | | 8000088
8000089 | B RED
N LK | 174
1,323 | 108
820 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 8000090 | 600 | 1,323
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902158 | BN PK | 2,087 | 1,294 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000150 | 3A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NA | WNOU | NA | NA | 3,415.87 | 3,442.13 | 3,442.13 | 3,442.13 | 3,442.13 | 3,442.13 | | SUBTOTAL: | | 10,101 | 6,262 | 4,206.72 | 4,220.20 | 4,220.20 | 4,220.20 | 4,220.20 | 4,220.20 | | LOS FLORES MUTU | AL WATER COI | MPANY | | | | | | | | | 11902098 | 1-LO | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 21902098 | 1-HI | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | LOUCKS, DAVID | | | | | | | | | | | 8000032 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MAECHTLEN, J.J. TF | RUSTEE | | | | | | | | | | 4000004 | OI DCO | NA | NIA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902321
1902322 | OLD60
SNIDO | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1902323 | M & N | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MANNING BROS. RO | OCK & SAND CO | OMPANY | | | | | | | | | 1900117 | 36230 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MAPLE WATER COM | IPANY (SUBUR | BAN WATER SYSTE | MS) | | | | | | | | 1900042 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000109 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | S MEDOV | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MARTINEZ, FRANCE | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000033 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | OF SOUTHERN CAL | | | | | | | | | 1900693
1900694 | 2 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MOLSON COORS US | SA, LLC (MILLE | RCOORS LLC) (1) | | | | | | | | | 8000034 | | NΙΛ | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000034
8000075 | 2 | NA
5,533 | 3,430 | 781.95 | 537.62 | 537.62 | 537.62 | 537.62 | 537.62 | | 8000075 | | 5,533 | 3,430 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | SUBTOTAL: | | 11,065 | 6,860 | 781.95 | 537.62 | 537.62 | 537.62 | 537.62 | 537.62 | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED GI | ROUNDWATER | DEMANDS | | |--------------------|----------------|---------------------|--------------|----------------|--------------|--------------|--------------|--------------|----------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 |
2022-23 | 2023-24 | 2024-25 | | | | AONETEET | O. III | | 2020 21 | 2021 22 | 2022 20 | 2020 24 | 2027 20 | | | | | | | | | | | | | MONROVIA, CITY C | OF (2) | | | | | | | | | | 1900417 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900417 | 2 | 2,742 | 1,700 | 54.60 | 54.59 | 56.77 | 59.05 | 61.41 | 63.86 | | 1900419 | 3 | 2,742 | 1,700 | 1,338.94 | 1,338.64 | 1,392.24 | 1,447.98 | 1,505.85 | 1,566.06 | | 1900420 | 4 | 2,903 | 1,800 | 2,035.16 | 2,034.71 | 2,116.18 | 2,200.90 | 2,288.87 | 2,380.37 | | 1940104 | 5 | 3,871 | 2,400 | 1,840.48 | 1,840.07 | 1,913.75 | 1,990.37 | 2,069.92 | 2,152.67 | | 8000171 | 6 | 3,871 | 2,400 | 1,625.34 | 1,624.98 | 1,690.05 | 1,757.71 | 1,827.96 | 1,901.04 | | SUBTOTAL: | | 16,130 | 10,000 | 6,894.52 | 6,893.00 | 7,169.00 | 7,456.00 | 7,754.00 | 8,064.00 | | MONROVIA NURSE | RY | | | | | | | | | | 1902456 | DIV 4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MONTEREY PARK, | CITY OF (2) | | | | | | | | | | 1900453 | 1 | 968 | 600 | 141.16 | 149.54 | 153.29 | 157.12 | 161.06 | 165.09 | | 1900454 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900455 | 3 | 968 | 600 | 286.11 | 303.10 | 310.69 | 318.45 | 326.43 | 334.61 | | 1900456 | 4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900457 | 5 | 2,903 | 1,800 | 407.55 | 431.75 | 442.56 | 453.62 | 464.99 | 476.64 | | 1900458 | 6 | 968 | 600 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902372
1902373 | 7
8 | 1,290
2,903 | 800
1,800 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | | 1902690 | 9 | 2,903 | 1,800 | 122.06 | 129.31 | 132.55 | 135.86 | 139.26 | 142.75 | | 1902818 | 10 | 2,903 | 1,800 | 412.25 | 436.73 | 447.67 | 458.85 | 470.35 | 482.13 | | 1903033 | 12 | 3,226 | 2,000 | 2,890.59 | 3,062.22 | 3,138.93 | 3,217.36 | 3,297.99 | 3,380.59 | | 1903092 | 14 | 1,129 | 700 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000126 | FERN | 1,613 | 1,000 | 69.66 | 73.80 | 75.64 | 77.53 | 79.48 | 81.47 | | 8000196 | 15 | 3,226 | 2,000 | 3,131.62 | 3,317.56 | 3,400.67 | 3,485.63 | 3,572.99 | 3,662.47 | | SUBTOTAL: | | 25,002 | 15,500 | 7,461.00 | 7,904.00 | 8,102.00 | 8,304.43 | 8,512.56 | 8,725.74 | | MOON VALLEY NU | RSERY OF CALIF | FORNIA, INC. (COINE | ER, JAMES | W., DBA COINER | NURSERY) (1) | | | | | | 1903072 | 5R | NA | NA | 93.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 93.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | MUNOZ, RALPH (1) |) | | | | | | | | | | 8000219 | MUNOZ | NA | NA | 1.36 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | SUBTOTAL: | | NA | NA | 1.36 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | NAMIMATSU FARM | IS INC. | | | | | | | | | | 1901034 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NICK TOMOVICH & | SON | | | | | | | | | | 8000037 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NO. 17 WALNUT PL | ACE MUTUAL W | ATER COMPANY | | | | | | | | | 8000038 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | OWL ROCK PRODU | UCTS (ROBERTS | ON'S READY MIX) | | | | | | | | | 1900043 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902241 | NA | 3,205 | 1,987 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1903119 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | STIDTOTAL: | | 2 205 | 1 007 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 3,205 | 1,987 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED GF | ROUNDWATER | DEMANDS | | | |----------------------|--------------------|-------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | | | | | <u> </u> | <u> </u> | <u> </u> | | | | | PARK WATER CO. | | | | | | | | | | | | 1901307
8000039 | 26-A
NA | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | PICO COUNTY WATI | ER DISTRICT | | | | | | | | | | | 8000040 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | POLOPOLUS, ET AL | | | | | | | | | | | | 1902169 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | PROGRESSIVE BUD | DHIST ASSOCIA | ATION (1) | | | | | | | | | | 8000228 | - | NA | NA | 0.54 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | | SUBTOTAL: | | NA | NA | 0.54 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | | RICHWOOD MUTUA | L WATER COMP | PANY | | | | | | | | | | 1901521 | 1 SOUTH | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1901522 | 2 NORTH | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | ROWLAND WATER I | DISTRICT (1) | | | | | | | | | | | | | NA | NA | 0.00 | 26.64 | 26.64 | 26.64 | 26.64 | 26.64 | | | SUBTOTAL: | | NA | NA | 0.00 | 26.64 | 26.64 | 26.64 | 26.64 | 26.64 | | | RURBAN HOMES MI | | , , | | | | | | | | | | 1900120
1900121 | 1-NORTH
2-SOUTH | 726
484 | 450
300 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | SUBTOTAL: | | 1,210 | 750 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | RUTH, ROY | | | | | | | | | | | | 8000041
SUBTOTAL: | NA | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | S.L.S. & N. INC. (1) | | | | | | | | | | | | 8000151 | NA | NA | NA | 24.88 | 26.70 | 26.70 | 26.70 | 26.70 | 26.70 | | | SUBTOTAL: | | NA | NA | 24.88 | 26.70 | 26.70 | 26.70 | 26.70 | 26.70 | | | SAN GABRIEL COU | NTRY CLUB (1) | | | | | | | | | | | 1900547
1902979 | 1
2 | 226
750 | 140
465 | 43.73
191.46 | 43.04
206.11 | 43.04
206.11 | 43.04
206.11 | 43.04
206.11 | 43.04
206.11 | | | SUBTOTAL: | | 976 | 605 | 235.19 | 249.15 | 249.15 | 249.15 | 249.15 | 249.15 | | | SAN GABRIEL COU | NTY WATER DIS | TRICT (2) | | | | | | | | | | 1901669 | 5 BRA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1901670
1901671 | 6 BRA
7 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | | 1901672 | 8 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 1902785 | 9 | 1,613 | 1,000 | 1,558.20 | 1,500.00 | 1,500.00 | 1,500.00 | 1,500.00 | 1,500.00 | | | 1902786
8000067 | 10
11 | NA
1,129 | NA
700 | 0.00
6.45 | 0.00
180.00 | 0.00
180.00 | 0.00
180.00 | 0.00
180.00 | 0.00
180.00 | | | 8000123 | 12 | 4,274 | 2,650 | 957.96 | 960.00 | 960.00 | 960.00 | 960.00 | 960.00 | | | 8000133 | 14 | 3,871 | 2,400 | 899.86 | 965.00 | 965.00 | 965.00 | 965.00 | 965.00 | | | 8000220 | 15 | 3,871 | 2,400 | 842.42 | 955.00 | 955.00 | 955.00 | 955.00 | 955.00 | | | SUBTOTAL: | | 14,759 | 9,150 | 4,264.89 | 4,560.00 | 4,560.00 | 4,560.00 | 4,560.00 | 4,560.00 | | | <u> </u> | | 11 | - | , , , , , , , , , , , , , , , , , , , | | | | | | |--------------------|--------------|----------------|----------------|---------------------------------------|----------------------|-------------------|----------------------|----------------------|----------------------| | RECORDATION | WELL | WELL CAPA | | 2019-20 | | PROJECTED G | | | | | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | | | | | | | | | | SAN GABRIEL VALL | EY WATER COM | PANY (1) | | | | | | | | | 1900725 | G4A | 1,534 | 951 | 213.93 | 215.32 | 218.63 | 222.79 | 222.79 | 222.79 | | 1900725 | 5A | 1,534
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902635 | B1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000112 | B5C | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000038 | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900729 | 1B | 1,792 | 1,111 | 153.96 | 154.96 | 157.34 | 160.34 | 160.34 | 160.34 | | 1902946 | 1C
1B4 | 3,268 | 2,026 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000081
8000082 | 1B5 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 8000102 | 1D | 3,524 | 2,185 | 3,181.65 | 3,202.37 | 3,251.56 | 3,313.44 | 3,313.44 | 3,313.44 | | 1900749 | 2C | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902857 | 2D | 3,684 | 2,284 | 1,949.77 | 1,962.47 | 1,992.61 | 2,030.53 | 2,030.53 | 2,030.53 | | 8000065 | 2E | 3,226 | 2,000 | 28.59 | 28.78 | 29.22 | 29.77 | 29.77 | 29.77 | | 1900736 | 8A | NA
4 007 | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900746
1900747 | 8B
8C | 1,887
2,299 | 1,170
1,425 | 10.84
1,337.56 | 10.91
1,346.27 | 11.08
1,366.95 | 11.29
1,392.96 | 11.29
1,392.96 | 11.29
1,392.96 | | 1903103 | 8D | 3,629 | 2,250 | 1,836.27 | 1,848.23 | 1,876.62 | 1,912.33 | 1,912.33 | 1,912.33 | | 8000113 | 8E | 4,412 | 2,735 | 17.08 | 17.19 | 17.46 | 17.79 | 17.79 | 17.79 | | 1900739 | 11A | 3,557 | 2,205 | 2,234.17 | 2,248.72 | 2,283.26 | 2,326.71 | 2,326.71 | 2,326.71 | | 1900745 | 11B | 2,894 | 1,794 | 4.27 | 4.30 | 4.36 | 4.45 | 4.45 | 4.45 | | 1902713 | 11C | 1,578 | 978 | 24.19 | 24.35 | 24.72 | 25.19 | 25.19 | 25.19 | | 8000083 | 11B7 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902858
1902947 | B4B
B4C | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1900718 | B5A | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900719 | B5B | 4,741 | 2,939
 4,642.37 | 4,672.60 | 4,744.37 | 4,834.66 | 4,834.66 | 4,834.66 | | 1900721 | B6B | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1903093 | B6C | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000084 | B6B2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000098 | B6D | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902525 | B2
B7E | NA
826 | NA
512 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
179.01 | | 8000122
1901435 | B7A | NA | 512
NA | 171.89
0.00 | 173.01
0.00 | 175.67
0.00 | 179.01
0.00 | 179.01
0.00 | 0.00 | | 1901436 | B8 | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901437 | B9 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901439 | B11A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901440 | B7B | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000068 | B7C | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000094 | B7D | NA
4 227 | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000099
8000108 | B9B
B11B | 1,327
2,855 | 823
1,770 | 259.53
456.46 | 261.22
459.43 | 265.23
466.49 | 270.28
475.37 | 270.28
475.37 | 270.28
475.37 | | 8000172 | 1E | 4,274 | 2,650 | 2,157.66 | 2,171.71 | 2,205.07 | 2,247.03 | 2,247.03 | 2,247.03 | | 8000160 | B5D | 3,805 | 2,359 | 77.75 | 78.26 | 79.46 | 80.97 | 80.97 | 80.97 | | 8000169 | 8F | 4,794 | 2,972 | 383.57 | 386.07 | 392.00 | 399.46 | 399.46 | 399.46 | | NA | G4B | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NA | 1F | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000197 | 2F | NA | 1,576 | 606.27 | 610.22 | 619.59 | 631.38 | 631.38 | 631.38 | | NA | B11C | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000203 | B24A | 3,736 | 2,316 | 12.49 | 12.57 | 12.76 | 13.01 | 13.01 | 13.01 | | 8000204 | B24B | 3,668 | 2,274 | 3.12 | 3.14 | 3.19
3,662.25 | 3.25 | 3.25 | 3.25 | | 8000187
8000188 | B25A
B25B | 3,892
3,968 | 2,413
2,460 | 3,583.51
3,362.85 | 3,606.84
3,384.75 | 3,002.25 | 3,731.94
3,502.14 | 3,731.94
3,502.14 | 3,731.94
3,502.14 | | 8000189 | B26A | 1,011 | 627 | 1,065.60 | 1,072.54 | 1,089.01 | 1,109.74 | 1,109.74 | 1,109.74 | | 8000190 | B26B | 1,800 | 1,116 | 1,022.07 | 1,028.73 | 1,044.53 | 1,064.41 | 1,064.41 | 1,064.41 | | 8000205 | B5E | 4,654 | 2,885 | 5,083.00 | 5,116.10 | 5,194.68 | 5,293.55 | 5,293.55 | 5,293.55 | | 8000226 | 11D | 2,823 | 1,750 | 464.94 | 467.97 | 475.16 | 484.20 | 484.20 | 484.20 | | NA | B24C | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NA | B24D | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 82,634 | 52,806 | 34,345.36 | 34,569.00 | 35,100.00 | 35,768.00 | 35,768.00 | 35,768.00 | | SLOAN RANCHES | | | | | | | | | | | 1901198 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000045 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NΙΛ | NIA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED G | ROUNDWATER | DEMANDS | | |----------------------|-----------------|-------------|-------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | AONETEET | O. III | | 2020 21 | 202122 | 2022 20 | 2020 24 | 2027 20 | | | | | | | | | | | | | SIERRA LA VERNE | COUNTRY CLUB (| 1) | | | | | | | | | 8000124 | 1 | NA | NA | 0.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | 8000125 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000192 | 15 OFFSITE | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | SIERRA MADRE, C | ITY OF (1) | | | | | | | | | | 8000193 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SONOCO PRODUC | TS COMPANY (1) | | | | | | | | | | 1912786 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902971 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000137 | 2 | NA | NA | 73.63 | 77.39 | 77.39 | 77.39 | 77.39 | 77.39 | | SUBTOTAL: | | NA | NA | 73.63 | 77.39 | 77.39 | 77.39 | 77.39 | 77.39 | | SOUTH COVINA W | ATER SERVICE | | | | | | | | | | 1901606 | 102 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SOUTH PASADENA | A, CITY OF (2) | | | | | | | | | | 1901679 | GRAV 2 | 1,129 | 700 | 0.00 | 140.00 | 140.00 | 140.00 | 140.00 | 140.00 | | 1901681 | 2 WIL | 1,936 | 1,200 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901682 | 3 WIL | 3,161 | 1,960 | 2,494.87 | 2,072.09 | 2,072.09 | 2,072.09 | 2,072.09 | 2,072.09 | | 1903086
SUBTOTAL: | 4 WIL | 1,774 | 1,100 | 863.59
3,358.46 | 1,162.91
3,375.00 | 1,162.91
3,375.00 | 1,162.91
3,375.00 | 1,162.91
3,375.00 | 1,162.91
3,375.00 | | | ODNIA EDISON CO | 8,000 | 4,960 | 3,336.46 | 3,373.00 | 3,373.00 | 3,373.00 | 3,375.00 | 3,373.00 | | SOUTHERN CALIF | ORNIA EDISON CO | WPANT (1) | | | | | | | | | 1900342 | 1EB86 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900343 | 2EB76 | 211 | 131 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000046 | 110RH | NA
2 122 | NA
1 500 | 0.16 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | | 8000047 | MURAT | 2,420 | 1,500 | 0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | 0.00 | | 1900344
1900344 | 38EIS
38W | 1,415
NA | 877
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | | SUBTOTAL: | | 4,045 | 2,508 | 0.16 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | | STERLING MUTUA | L WATER COMPAN | , | .,0 | 23 | | | | | | | 1902085 | SOUTH | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902085 | NORTH | 397 | NA
246 | 26.09 | 27.07 | 27.07 | 27.07 | 27.07 | 27.07 | | 8000132 | NEW SO | 436 | 270 | 63.02 | 65.39 | 65.39 | 65.39 | 65.39 | 65.39 | | SUBTOTAL: | | 832 | 516 | 89.11 | 92.47 | 92.47 | 92.47 | 92.47 | 92.47 | | SUBURBAN WATE | R SYSTEMS (2) | | | | | | | | | | 1900337 | 152W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901429 | 201W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901430 | 201W2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901431 | 201W3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901432 | 201W5 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901433
1901434 | 201W4
201W6 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1901434 | 201W6
147W1 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901597 | 142W1 | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901598 | 139W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901599 | 139W2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901600 | 139W3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901602 | 140W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901604 | 148W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | PECCEDATION I |)A/F-1 * | | AOIT. | 0040.00 | | DDO ICOTES (| POURDWATE | DEMANDO | | |-----------------------|----------------|-------------|-------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | RECORDATION
NUMBER | WELL
NAME | WELL CAP | | 2019-20
PRODUCTION | 2020.24 | | 2022-23 | | 2024.25 | | HOMBER | IVAIVIL | ACRE-FEET | GPM | . NODOGITOR | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | | | | | | | | | | 1901608 | 105W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901609 | 106W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901610 | 111W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901611
1901612 | 112W1
113W1 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1901613 | 114W1 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901614 | 117W1 | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901615 | 120W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901616 | 122W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901617 | 123W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901618 | 124W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901619 | 125W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901620 | 126W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901621
1901622 | 131W1
133W1 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1901623 | 134W1 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901624 | 135W1 | NA
NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901625 | 136W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901627 | 202W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902119 | 149W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902519 | 150W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902760 | 147W2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902761 | 153W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902762 | 154W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902763
1903067 | 157W1
140W3 | NA
NA | NA
NA | 0.00
0.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 8000069 | 139W4 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000077 | 147W3 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000087 | 125W2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
 0.00 | | 8000092 | 126W2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000093 | 140W4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000145 | 140W5 | 4,516 | 2,800 | 0.13 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | | 8000095 | 139W5 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000152 | 139W6 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902518 | 151W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902819 | 155W1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902820
1901605 | 155W2
101W1 | NA
NA | NA
NA | 0.00
0.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1901607 | 103W1 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000181 | 121W1 | 2,742 | 1,700 | 257.22 | 367.21 | 367.21 | 367.21 | 367.21 | 367.21 | | 8000183 | 142W2 | 4,033 | 2,500 | 4,558.32 | 6,507.49 | 6,507.49 | 6,507.49 | 6,507.49 | 6,507.49 | | 8000195 | 201W7 | 4,839 | 3,000 | 3,273.43 | 4,673.17 | 4,673.17 | 4,673.17 | 4,673.17 | 4,673.17 | | 8000198 | 201W8 | 4,516 | 2,800 | 1,358.05 | 1,938.76 | 1,938.76 | 1,938.76 | 1,938.76 | 1,938.76 | | 8000207 | 151W2 | 5,162 | 3,200 | 1,007.86 | 1,438.83 | 1,438.83 | 1,438.83 | 1,438.83 | 1,438.83 | | 8000208 | 201W9 | 5,162 | 3,200 | 4,934.51 | 7,044.54 | 7,044.54 | 7,044.54 | 7,044.54 | 7,044.54 | | 8000210 | 201W10 | 5,807 | 3,600 | 1,680.69 | 2,399.36 | 2,399.36 | 2,399.36 | 2,399.36 | 2,399.36 | | SUBTOTAL: | | 36,776 | 22,800 | 17,070.21 | 24,369.54 | 24,369.54 | 24,369.54 | 24,369.54 | 24,369.54 | | SUNNY SLOPE WA | TER COMPANY (| 1) | | | | | | | | | 4000000 | • | 0.000 | 4.05.4 | 4 000 70 | 4 040 00 | 4.040.00 | 4.040.00 | 4.040.00 | 4 040 00 | | 1900026 | 8
9 | 2,668 | 1,654 | 1,680.79
38.10 | 1,819.39
41.24 | 1,819.39
41.24 | 1,819.39
41.24 | 1,819.39
41.24 | 1,819.39
41.24 | | 1902792
8000048 | 10 | 2,970
NA | 1,721
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000157 | 13 | 2,970 | 1,841 | 656.41 | 710.54 | 710.54 | 710.54 | 710.54 | 710.54 | | SUBTOTAL: | | 8,607 | 5,216 | 2,375.30 | 2,571.17 | 2,571.17 | 2,571.17 | 2,571.17 | 2,571.17 | | TEXACO INC. | | | | | | | | | | | 1900001 | 14 | 519 | 322 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 519 | 322 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | TRAN, HIEU (1) | | | | | | | | | | | 8000218 | TRAN | NA | NA | 4.99 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | SUBTOTAL: | | NA | NA | 4.99 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | | TYLER NURSERY | | | | | | | | | | | 8000049 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | RECORDATION | WELL | WELL CAPA | CITY | 2019-20 | | PROJECTED G | ROUNDWATER | DEMANDS | | |--------------------|---------------------|--------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | 7.5.1. | <u> </u> | <u> </u> | | | | | | | LINITED CONCRE | TE PIPE CORPORAT | TON | | | | | | | | | UNITED CONCRE | IE PIPE CORPORAT | ION | | | | | | | | | 8000067 | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | UNITED ROCK PR | ODUCTS CORPORA | ATION (1) | | | | | | | | | 1900106 | IRW-1 | NA | NA | 467.09 | 401.49 | 401.49 | 401.49 | 401.49 | 401.49 | | 1902532 | SIERRA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1903062
NA | IRW-2
PIT 2 PUMP | NA
NA | NA
NA | 1.29
31.87 | 1.11
27.39 | 1.11
27.39 | 1.11
27.39 | 1.11
27.39 | 1.11
27.39 | | SUBTOTAL: | | NA | NA | 500.25 | 429.99 | 429.99 | 429.99 | 429.99 | 429.99 | | | ENVIRONMENTAL PI | | | | | | | | | | | | | | 0.00 | | | 0.00 | 0.00 | 2.22 | | NA
NA | EW4-3
EW4-4 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00 | 0.00
0.00 | 0.00 | | NA
NA | EW4-4
EW4-8 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00
0.00 | 0.00
0.00 | 0.00 | 0.00 | | NA | EW4-9 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | VALENCIA HEIGH | TS WATER COMPAN | NY (2) | | | | | | | | | 8000051 | 1 | NA | NA | 538.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000052 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000054 | 4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000055 | 3A | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000120 | 5 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000180 | 6
7 | 807
726 | 500 | 0.00 | 342.86 | 457.14 | 457.14 | 457.14 | 457.14 | | 8000211 | 1 | 720 | 450 | 0.00 | 257.14 | 342.86 | 342.86 | 342.86 | 342.86 | | SUBTOTAL: | | 1,532 | 950 | 538.26 | 600.00 | 800.00 | 800.00 | 800.00 | 800.00 | | VALECITO WATER | R COMPANY | | | | | | | | | | 1901435 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901436 | 2 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901437 | 3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901438 | 4 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901439 | 5 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901440 | 6 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | VALLEY COUNTY | WATER DISTRICT (3 | 3) | | | | | | | | | 1900027 | E MAIN | 2,760 | 1,711 | 1,889.79 | 1,943.78 | 1,943.78 | 1,943.78 | 1,943.78 | 1,943.78 | | 1900028 | W MAIN | 1,681 | 1,042 | 887.01 | 912.35 | 912.35 | 912.35 | 912.35 | 912.35 | | 1900029 | MORADA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900031 | PADDY | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900032 | E NIXON (JOAN) | 4,355 | 2,700 | 2,105.27 | 2,165.42 | 2,165.42 | 2,165.42 | 2,165.42 | 2,165.42 | | 1900034 | ARROW | NA | 3,400 | 79.00 | 4,033.00 | 4,033.00 | 4,033.00 | 4,033.00 | 4,033.00 | | 1900035
1901307 | B DAL
11 | NA
NA | NA
NA | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | 1901307 | W NIXON (JOAN) | 4,194 | 2,600 | 1,967.24 | 2,023.45 | 2,023.45 | 2,023.45 | 2,023.45 | 2,023.45 | | 8000039 | PALM | 4, 194
NA | 2,000
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000060 | LANTE (SA1-3) | 5,484 | 3,400 | 2,570.49 | 4,033.00 | 4,033.00 | 4,033.00 | 4,033.00 | 4,033.00 | | 8000185 | SA1-1 | 1,613 | 1,000 | 1,009.34 | 1,613.00 | 1,613.00 | 1,613.00 | 1,613.00 | 1,613.00 | | 8000186 | SA1-2 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 20,087 | 15,853 | 10,508.14 | 16,724.00 | 16,724.00 | 16,724.00 | 16,724.00 | 16,724.00 | | VALLEY VIEW MU | TUAL WATER COM | PANY (2) | | | | | | | | | 1900363 | 1 | 310 | 192 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900364 | 2 | 766 | 475 | 552.23 | 503.00 | 503.00 | 503.00 | 503.00 | 503.00 | | 1900365 | 3 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 1,076 | 667 | 552.23 | 503.00 | 503.00 | 503.00 | 503.00 | 503.00 | | SODIOIAL. | | 1,070 | 007 | 552.25 | 505.00 | 503.00 | 505.00 | 505.00 | 505.00 | | RECORDATION | WELL | WELL CAP | ACITY | 2019-20 | | PROJECTED O | ROUNDWATE | R DEMANDS | | |--------------------|------------------|----------------|------------|----------------|----------------|----------------|----------------|----------------|----------------| | NUMBER | NAME | ACRE-FEET | GPM | PRODUCTION | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | | | | | | | | | | | | | VIA TRUST | | | | | | | | | | | 1903012 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | VULCAN MATERIA | ALS COMPANY (CAL | MAT COMPANY) | (1) | | | | | | | | 1902920 | E DUR | 6,386 | 3,959 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1903088 | 1 REL | 4,068 | 2,522 | 181.67 | 235.53 | 235.53 | 235.53 | 235.53 | 235.53 | | 8000063 | W DUR | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | NA | TEMP/NEW PERM | NA | NA | 314.45 | 407.67 | 407.67 | 407.67 | 407.67 | 407.67 | | SUBTOTAL: | | 10,454 | 6,481 | 496.12 | 643.19 | 643.19 | 643.19 | 643.19 | 643.19 | | WHITTIER, CITY O | PF (1) | | | | | | | | | | 1901745 | 9 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901746 | 10 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901747 | 11 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1901748 | 12 | NA
1 048 | NA
650 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
898.90 | | 1901749
8000021 | 13
FROM | 1,048
NA | 650
NA | 263.74
0.00 | 855.93
0.00 | 868.97
0.00 | 883.51
0.00 | 898.04
0.00 | 0.00 | | 8000021 | 15 | 5,807 | 3,600 | 886.73 | 2,877.76 | 2,921.60 | 2,970.48 | 3,019.35 | 3,022.22 | | 8000110 | 16 | 4,355 | 2,700 | 83.29 | 270.31 | 274.42 | 279.02 | 283.61 | 283.88 | | 8000116 | 17 | 0 | 2,700 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 8000136 | 18 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 11,210 | 6,950 | 1,233.76 | 4,004.00 | 4,065.00 | 4,133.00 | 4,201.00 | 4,205.00 | | WILMOTT, ERMA | М. | | | | | | | | | | 8000006 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | WOODLAND, RICH | HARD | | | | | | | | | | 1902949 | 1 | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1902949 | 2 | NA
NA | NA
NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | WORKMAN MILL I | NVESTMENT COMP | ANY (RINCON DI | TCH COMPA | NY) (1) | | | | | | | 1902790 | 4 | 2,153 | 1,335 | 0.00 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | | SUBTOTAL: | | 2,153 | 1,335 | 0.00 | 18.75 | 18.75 | 18.75 | 18.75 | 18.75 | | WORKMAN MILL I | NVESTMENT COMP | ANY (RINCON IR | RIGATION C | OMPANY) (1) | | | | | | | 1900132 | 1 | NA | NA | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900095 | 2 | 1,428 | 885 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | SUBTOTAL: | | 1,428 | 885 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | WORKMAN MILL I | NVESTMENT COMP | ANY (ROSE HILL | S MEMORIA | L PARK) (1) | | | | | | | 1900052 | 3 | 1,192 | 739 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1900094 | 1 | 673 | 417 | 0.00 | 53.96 | 53.96 | 53.96 | 53.96 | 53.96 | | SUBTOTAL: | | 1,865 | 1,156 | 0.00 | 53.96 | 53.96 | 53.96 | 53.96 | 53.96 | | тс | DTAL | 503,053 | 317,530 | 183,252.92 | 216,968.23 | 218,916.96 | 220,891.78 | 223,921.95 | 224,826.41 | ## NOTES: GROUNDWATER PRODUCTION AND DEMANDS IN ACRE-FEET GPM:GALLONS PER MINUTE NA:NOT AVAILABLE (1) GROUNDWATER DEMANDS PROJECTED BY WATERMASTER (2) PROJECTED GROUNDWATER DEMANDS PROVIDED BY PRODUCER (3) PROJECTED GROUNDWATER DEMANDS PROVIDED BY PRODUCER AND ADJUSTED BY WATERMASTER ## APPENDIX B. ## SIMULATED CHANGES IN GROUNDWATER ELEVATIONS AT WELLS OR WELLFIELDS IN MAIN SAN GABRIEL BASIN B APPENDIX B SIMULATED CHANGES IN GROUNDWATER ELEVATION AT WELLS OR WELLFIELDS IN MAIN SAN GABRIEL BASIN UNDER PROJECTED FIVE CONSECUTIVE DRY HYDROLOGICAL CONDITIONS WITH WATER RESOURCE DEVELOPMENT ASSESSMENT | WELL OR | RECORDATION | WELL | | ELEVATION (1) | CHANGE (2) | REMARKS | |-----------------|-----------------|----------|---------|---------------|------------|--| | WELLFIELD | NUMBER | STATUS | 2019-20 | 2024-25 | (FEET) | | | ADAMS RANCH N | IUTUAL WATER CO | MPANY | | | | | | 01 | 1902106 | Inactive | 162.60 | 157.70 | -4.90 | | | 02 | 1902689 | Inactive | 162.60 | 157.70 | -4.90 | | | 03 | 8000182 | Inactive | 162.10 | 157.30 | -4.80 | | | ALHAMBRA, CITY | OF | | | | | | | MOEL (08) | 1900010 | Active | 146.90 | 144.20 | -2.70 | Groundwater Demands Projected by Watermaster | | 09 | 1900011 | Standby | 150.10 | 148.50 | -1.60 | Groundwater Demands Projected by Watermaster | | 10 | 1900012 | Inactive | 151.80 | 149.80 | -2.00 | | | 12 | 1900013 | Standby | 151.20 | 149.30 | -1.90 | Groundwater Demands Projected by Watermaster | | 13 | 1900014 | Active | 151.20 | 149.00 | -2.20 | | | 14 | 1900015 | Active | 151.20 | 148.20 | -3.00 | Groundwater Demands Projected by Watermaster | | 15 | 1900016 | Active | 150.80 | 146.50 | -4.30 | Groundwater Demands Projected by Watermaster | | LON 1 | 1903014 | Active | 148.60 | 146.30 | -2.30 | Groundwater Demands Projected by Watermaster | | LON 2 | 1900017 | Active | 133.40 | 133.00 | -0.40 | Groundwater Demands Projected by Watermaster | | GARF | 1900018 | Inactive | 154.00 | 152.10 | -1.90 | | | 11 | 1903014 | Active | 148.60 | 146.30 | -2.30 | Groundwater Demands Projected by Watermaster | | 07 | 1903097 | Inactive | 149.30 | 147.10 | -2.20 | | | AMARILLO MUTU | AL WATER COMPA | NY | | | | | | 01 | 1900791 | Active | 160.20 | 154.70 | -5.50 | Projected Groundwater Demands Provided by Producer | | 02 | 1900792 | Active | 160.20 | 154.70 | -5.50 | Projected Groundwater Demands Provided by Producer | | ARCADIA, CITY O | F | | | | | | | LON 1 | 1901013 | Active | 195.50 | 177.30 | -18.20 | Projected Groundwater Demands Provided by Producer | | LON 2 | 1901014 | Active | 195.80 | 177.70 | -18.10 | Projected Groundwater Demands Provided by Producer | | CAM REAL 3 | 8000213 | Active | 186.40 | 172.40 | -14.00 | Projected Groundwater Demands Provided by Producer | | | l ====== | | OIM!!! 4==== = | LEVATION | | | |----------------------|-----------------------|----------------|------------------------|-------------------------|----------------------|---| | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | SIMULATED E
2019-20 | LEVATION (1)
2024-25 | CHANGE (2)
(FEET) | REMARKS | | | | 5.A100 | | _VET EV | ,, ==:/ | | | ST JO 2 | 8000177 | Inactive | 195.80 | 181.50 | -14.30 | Projected Groundwater Demands Provided by Producer | | BAL 2 | 1902791 | Inactive | 169.20 | 163.70 | -5.50 | | | PECK 1 | 1902854 | Active | 190.40 | 171.70 | -18.70 | Projected Groundwater Demands Provided by Producer | | L OAK 1 | 8000127 | Active | 192.40 | 172.40 | -20.00 | Projected Groundwater Demands Provided by Producer | | LGY 3 | 8000214 | Active | 178.20 | 167.50 | -10.70 | Projected Groundwater Demands Provided by Producer | | AZUSA, CITY OF (| AZUSA AGRICULTU | RE WATER CO | OMPANY, AZUSA \ | ALLEY WATER | COMPANY) | | | 05 (01) | 1902533 | Active | 576.80 | 562.50 | -14.30 | Projected Groundwater Demands Provided by Producer | | 06 (03) | 1902535 | Active | 576.80 | 561.70 | -15.10 | Projected Groundwater Demands Provided by Producer | | GENESIS 2 (05) | 1902537 | Inactive | 224.00 | 204.10 | -19.90 | | | 01 (07) | 8000072 | Active | 577.30 | 560.30 | -17.00 | Projected Groundwater Demands Provided by Producer | | 03 (08) | 8000086 | Active | 576.60 | 559.80 | -16.80 | Projected Groundwater Demands Provided by Producer | | 02 (1 NORTH) | 1902457 | Active | 577.50 | 561.00 | -16.50 | Projected Groundwater Demands Provided by Producer | | 04 (2 SOUTH) | 1902458 | Active | 577.10 | 560.30 | -16.80 | Projected Groundwater Demands Provided by Producer | | 08 (AVWC 04) | 1902115 | Active | 577.00 | 562.40 | -14.60 | Projected Groundwater Demands Provided by Producer | | 07 (AVWC 05) | 1902116 | Active | 576.80 | 561.70 | -15.10 | Projected Groundwater Demands Provided by Producer | | 09 (AVWC 06) | 1902117 | Inactive | 222.60 | 204.70 | -17.90 | | | 10 (AVWC 08) | 8000103 | Active | 222.10 | 204.30 | -17.80 | Projected Groundwater Demands Provided by Producer | | 11 | 8000178 | Active | 577.60 | 561.20 | -16.40 | Projected Groundwater Demands Provided by Producer | | 12 | 8000179 | Active | 578.20 | 562.10 | -16.10 | Projected Groundwater Demands Provided by Producer | | CALIFORNIA-AME | ERICAN WATER COM | /IPANY/DUART | E SYSTEM | | | | | STA FE | 1900354 | Active | 233.50 | 191.90 | -41.60 | Projected Groundwater Demands Provided by Producer | | ВV | 1900355 | Standby | 216.70 | 187.40 | -29.30 | | | B V 2 | 8000216 | Active | 216.70 | 187.40 | -29.30 | Projected Groundwater Demands Provided by
Producer | | | BECORE :=:::: | | CIMIL! ATER 5 | LEVATION (4) | 01111127 | | |----------------------|-----------------------|----------------|------------------------|--------------|----------------------|--| | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | SIMULATED E
2019-20 | 2024-25 | CHANGE (2)
(FEET) | REMARKS | | FISH C | 1900358 | Inactive | 577.60 | 561.60 | -16.00 | | | WILEY | 1902907 | Active | 570.90 | 556.60 | -14.30 | Projected Groundwater Demands Provided by Producer | | CR HV | 1903018 | Active | 229.60 | 194.10 | -35.50 | Projected Groundwater Demands Provided by Producer | | ENCANTO | 8000139 | Active | 568.90 | 556.30 | -12.60 | Projected Groundwater Demands Provided by Producer | | LAS L2 | 8000140 | Active | 559.90 | 550.80 | -9.10 | Projected Groundwater Demands Provided by Producer | | BACON | 1900497 | Active | 563.60 | 553.30 | -10.30 | Projected Groundwater Demands Provided by Producer | | CALIFORNIA-AME | RICAN WATER COM | /IPANY/SAN M | ARINO SYSTEM | | | | | GUESS | 1900918 | Inactive | 161.30 | 157.10 | -4.20 | | | MIVW 2 | 1900920 | Inactive | 156.70 | 157.10 | 0.40 | | | GRAND | 1900926 | Inactive | 152.90 | 152.50 | -0.40 | | | ROSEMEAD | 1900927 | Inactive | 153.80 | 152.40 | -1.40 | | | ROANOKE | 1900934 | Inactive | 150.60 | 148.90 | -1.70 | | | LONGDEN | 1900935 | Active | 141.10 | 139.90 | -1.20 | Projected Groundwater Demands Provided by Producer | | HOWLAND | 1902424 | Active | 169.90 | 162.90 | -7.00 | Projected Groundwater Demands Provided by Producer | | MAR 3 | 1903019 | Active | 164.40 | 159.20 | -5.20 | Projected Groundwater Demands Provided by Producer | | DELMAR | 1903059 | Active | 142.50 | 138.80 | -3.70 | Projected Groundwater Demands Provided by Producer | | HALL 2 | 8000175 | Active | 171.20 | 162.20 | -9.00 | Projected Groundwater Demands Provided by Producer | | CALIFORNIA COU | INTRY CLUB | | | | | | | ARTES | 1902531 | Standby | 179.20 | 170.50 | -8.70 | | | SYCAMORE | 1903084 | Standby | 179.10 | 170.40 | -8.70 | | | CALIFORNIA DON | IESTIC WATER COM | IPANY | | | | | | 02 | 1901181 | Active | 181.20 | 169.50 | -11.70 | Projected Groundwater Demands Provided by Producer | | 06 | 1902967 | Active | 182.90 | 171.60 | -11.30 | Projected Groundwater Demands Provided by Producer | | 03 | 1903057 | Active | 180.50 | 168.90 | -11.60 | Projected Groundwater Demands Provided by Producer | | 08 | 1903081 | Active | 180.90 | 169.60 | -11.30 | Projected Groundwater Demands Provided by Producer | | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | SIMULATED E
2019-20 | 2024-25 | CHANGE (2)
(FEET) | REMARKS | |----------------------|-----------------------|----------------|------------------------|-----------------|----------------------|--| | TTLLI ILLD | HOMBEN | 01/100 | 2013-20 | 2024-2J | (1 <u>LL 1)</u> | | | 05A | 8000100 | Active | 180.20 | 168.50 | -11.70 | Projected Groundwater Demands Provided by Producer | | 14 | 8000174 | Active | 181.00 | 169.90 | -11.10 | Projected Groundwater Demands Provided by Producer | | CITRUS VALLEY | MEDICAL CENTER, | QUEEN OF THI | E VALLEY CAMPU | JS (QUEEN OF TH | IE VALLEY HOS | PITAL) | | NA | 8000138 | Inactive | 200.10 | 187.90 | -12.20 | | | COVINA IRRIGATI | ING COMPANY | | | | | | | BAL 3 | 1900882 | Active | 206.00 | 189.10 | -16.90 | Projected Groundwater Demands Provided by Producer | | BAL 1 | 1900885 | Active | 206.30 | 189.30 | -17.00 | Projected Groundwater Demands Provided by Producer | | BAL 2 | 1900883 | Active | 206.20 | 189.20 | -17.00 | Projected Groundwater Demands Provided by Producer | | CROWN CITY PLA | ATING COMPANY | | | | | | | 01 | 8000012 | Inactive | 169.70 | 163.00 | -6.70 | | | DEL RIO MUTUAL | . WATER COMPANY | | | | | | |
BURKETT | 1900331 | Active | 178.50 | 169.40 | -9.10 | Groundwater Demands Projected by Watermaster | | DRIFTWOOD DAII | RY | | | | | | | 01 | 1902924 | Inactive | 182.30 | 170.30 | -12.00 | | | EAST PASADENA | WATER COMPANY | , LTD. | | | | | | 09 | 1901508 | Active | 149.80 | 148.50 | -1.30 | Projected Groundwater Demands Provided by Producer | | 11 | 8000217 | Active | 149.80 | 148.50 | -1.30 | Projected Groundwater Demands Provided by Producer | | EL MONTE, CITY | OF | | | | | | | 02A | 1901692 | Active | 177.10 | 167.60 | -9.50 | Groundwater Demands Projected by Watermaster | | 03 | 1901693 | Standby | 179.10 | 169.10 | -10.00 | | | 04 | 1901694 | Standby | 177.90 | 168.40 | -9.50 | | | 10 | 1901699 | Active | 179.70 | 169.40 | -10.30 | Groundwater Demands Projected by Watermaster | | 12 | 1903137 | Active | 176.20 | 167.20 | -9.00 | Groundwater Demands Projected by Watermaster | | 13 | 8000101 | Active | 176.70 | 167.60 | -9.10 | Groundwater Demands Projected by Watermaster | | 15 | 8000232 | Active | 166.20 | 160.30 | -5.90 | Groundwater Demands Projected by Watermaster | | 16 | 8000233 | Active | 167.60 | 161.40 | -6.20 | Groundwater Demands Projected by Watermaster | | WELL OR | RECORDATION | WELL | SIMULATED E | LEVATION (1) | CHANGE (2) | REMARKS | |----------------|-----------------|-------------|----------------|----------------|----------------|--| | WELLFIELD | NUMBER | STATUS | 2019-20 | 2024-25 | (FEET) | TEMANIO | | GLENDORA, CITY | OF | | | | | | | 11-E | 1900826 | Active | 571.90 | 580.70 | 8.80 | Projected Groundwater Demands Provided by Producer | | 08-E | 1900829 | Active | 574.40 | 558.00 | -16.40 | Projected Groundwater Demands Provided by Producer | | 09-E | 1900830 | Active | 575.40 | 558.80 | -16.60 | Projected Groundwater Demands Provided by Producer | | 12-E | 1900827 | Active | 574.40 | 558.00 | -16.40 | Projected Groundwater Demands Provided by Producer | | 10-E | 1900828 | Active | 571.30 | 579.80 | 8.50 | Projected Groundwater Demands Provided by Producer | | 07-G | 1900831 | Inactive | 223.00 | 203.80 | -19.20 | | | 13-E | 8000184 | Active | 566.30 | 573.90 | 7.60 | Projected Groundwater Demands Provided by Producer | | 02-E | 1901526 | Active | 566.70 | 573.90 | 7.20 | Projected Groundwater Demands Provided by Producer | | 03-G | 1901525 | Inactive | 219.20 | 202.00 | -17.20 | | | 04-E | 1901524 | Inactive | 219.40 | 202.40 | -17.00 | | | 05-E | 8000149 | Active | 575.10 | 559.30 | -15.80 | Projected Groundwater Demands Provided by Producer | | GOLDEN STATE V | WATER COMPANY (| SOUTHERN CA | LIFORNIA WATEI | R COMPANY)/SAM | N DIMAS DISTRI | СТ | | BAS-3 | 1902148 | Active | 809.10 | 789.20 | -19.90 | Groundwater Demands Projected by Watermaster | | BAS-4 | 1902149 | Active | 800.30 | 777.80 | -22.50 | Groundwater Demands Projected by Watermaster | | HIGHWAY | 1902150 | Active | 809.10 | 789.70 | -19.40 | Groundwater Demands Projected by Watermaster | | HIGHWAY 2 | 8000212 | Active | 808.10 | 790.60 | -17.50 | Groundwater Demands Projected by Watermaster | | ART-3 | 1902842 | Active | 803.60 | 782.40 | -21.20 | Groundwater Demands Projected by Watermaster | | COL-4 | 1902268 | Active | 572.00 | 536.10 | -35.90 | Groundwater Demands Projected by Watermaster | | COL-6 | 1902270 | Inactive | 573.50 | 537.40 | -36.10 | | | COL-8 | 1902272 | Inactive | 701.40 | 663.20 | -38.20 | | | CITY | 1902286 | Active | 1249.00 | 1206.00 | -43.00 | Groundwater Demands Projected by Watermaster | | MALON | 1902287 | Active | 1244.00 | 1198.00 | -46.00 | Groundwater Demands Projected by Watermaster | | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | 2019-20 | 2024-25 | CHANGE (2)
(FEET) | REMARKS | |----------------------|-----------------------|----------------|----------------|----------------|----------------------|--| | WELLITED | NOMBER | UIAIUU | 2013-20 | 2024-20 | (1 == 1) | | | GOLDEN STATE V | WATER COMPANY (| SOUTHERN CA | ALIFORNIA WATE | R COMPANY)/SAN | I GABRIEL VAL | LEY DISTRICT | | S G 1 | 1900510 | Active | 153.90 | 148.10 | -5.80 | Groundwater Demands Projected by Watermaster | | S G 2 | 1900511 | Active | 154.60 | 149.10 | -5.50 | Groundwater Demands Projected by Watermaster | | SAX 3 | 1900514 | Active | 154.70 | 151.40 | -3.30 | Groundwater Demands Projected by Watermaster | | SAX 4 | 8000146 | Active | 154.70 | 151.40 | -3.30 | Groundwater Demands Projected by Watermaster | | JEF 1 | 1902017 | Inactive | 197.10 | 178.40 | -18.70 | | | JEF 4 | 8000111 | Active | 197.10 | 178.40 | -18.70 | Groundwater Demands Projected by Watermaster | | ENC 1 | 1902024 | Active | 160.90 | 155.90 | -5.00 | Groundwater Demands Projected by Watermaster | | ENC 2 | 1902035 | Active | 160.10 | 155.40 | -4.70 | Groundwater Demands Projected by Watermaster | | ENC 3 | 8000073 | Active | 159.60 | 155.50 | -4.10 | Groundwater Demands Projected by Watermaster | | PER 1 | 1902027 | Active | 182.40 | 170.00 | -12.40 | Groundwater Demands Projected by Watermaster | | GRA 2 | 1902461 | Inactive | 199.30 | 180.70 | -18.60 | | | FAR 1 | 1902034 | Active | 189.10 | 172.70 | -16.40 | Groundwater Demands Projected by Watermaster | | FAR 2 | 1902948 | Active | 188.80 | 172.80 | -16.00 | Groundwater Demands Projected by Watermaster | | GOULD ELECTRO | ONICS INC. AND JOH | INSON CONTR | OLS INC. | | | | | SEW | NA | Active | 166.40 | 161.20 | -5.20 | Groundwater Demands Projected by Watermaster | | HANSON AGGRE | GATES WEST, INC. (| LIVINGSTON- | GRAHAM) | | | | | EL 4 | 1903006 | Active | 199.00 | 181.40 | -17.60 | Groundwater Demands Projected by Watermaster | | EL 1 | 1901492 | Active | 199.50 | 181.50 | -18.00 | Groundwater Demands Projected by Watermaster | | EL 3 | 1901493 | Active | 199.70 | 181.80 | -17.90 | Groundwater Demands Projected by Watermaster | | WELL OR | RECORDATION | WELL | SIMULATED E | ELEVATION (1) | CHANGE (2) | REMARKS | |----------------|------------------|--------------|-----------------|---------------|------------|---| | WELLFIELD | NUMBER | STATUS | 2019-20 | 2024-25 | (FEET) | 1 | | HEMLOCK MUTU | AL WATER COMPAN | NY | | | | | | NORTH | 1901178 | Active | 191.40 | 175.80 | -15.60 | Groundwater Demands Projected by Watermaster | | SOUTH | 1902806 | Active | 191.10 | 175.80 | -15.30 | Groundwater Demands Projected by Watermaster | | INDUSTRY WATE | RWORKS SYSTEM, | CITY OF | | | | | | 01 | 1902581 | Inactive | 181.80 | 171.80 | -10.00 | | | 03 | 8000078 | Inactive | 181.80 | 171.80 | -10.00 | | | 04 | 8000096 | Inactive | 181.80 | 171.70 | -10.10 | | | 02 | 1902582 | Inactive | 182.00 | 172.00 | -10.00 | | | 05 | 8000097 | Active | 181.40 | 171.40 | -10.00 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | LA PUENTE VALI | LEY COUNTY WATER | R DISTRICT | | | | | | 02 | 1901460 | Active | 195.00 | 182.40 | -12.60 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 04 | 8000062 | Inactive | 194.60 | 182.60 | -12.00 | | | 03 | 1902859 | Active | 195.20 | 183.00 | -12.20 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 05 | 8000209 | Active | 194.60 | 182.60 | -12.00 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | LOS ANGELES, C | COUNTY OF | | | | | | | KEY WELL | 3030F | Monitoring | 203.40 | 186.70 | -16.70 | | | WHI 1 | 1902579 | Inactive | 171.00 | 162.20 | -8.80 | | | SF 1 | 8000070 | Active | 220.60 | 194.50 | -26.10 | Groundwater Demands Projected by Watermaster | | BIG RED | 8000088 | Inactive | 173.30 | 164.60 | -8.70 | | | NEW LAKE | 8000089 | Inactive | 170.10 | 161.60 | -8.50 | | | MILLERCOORS L | LC (MILLER BREWE | RIES WEST, L | .P./MILLER BREV | VING COMPANY) | | | | 01 | 8000075 | Inactive | 223.60 | 195.70 | -27.90 | | | 02 | 8000076 | Active | 225.80 | 195.60 | -30.20 | Groundwater Demands Projected by Watermaster | | WELL OR | RECORDATION | WELL | SIMULATED E | ELEVATION (1) | CHANGE (2) | REMARKS | |----------------|--------------------|--------------|----------------|---------------|------------|--| | WELLFIELD | NUMBER | STATUS | 2019-20 | 2024-25 | (FEET) | 1 | | MONROVIA, CITY | OF | | | | | | | 02 | 1900418 | Active | 196.90 | 178.00 | -18.90 | Projected Groundwater Demands Provided by Producer | | 03 | 1900419 | Active | 196.40 | 177.60 | -18.80 | Projected Groundwater Demands Provided by Producer | | 04 | 1900420 | Active | 198.60 | 178.80 | -19.80 | Projected Groundwater Demands Provided by Producer | | 05 | 1940104 | Active | 198.60 | 178.20 | -20.40 | Projected Groundwater Demands Provided by Producer | | 06 | 8000171 | Active | 196.70 | 177.60 | -19.10 | Projected Groundwater Demands Provided by Producer | | MONTEREY PAR | K, CITY OF | | | | | | | 01 | 1900453 | Active | 156.60 | 151.90 | -4.70 | Projected Groundwater Demands Provided by Producer | | 03 | 1900455 | Inactive | 156.30 | 151.50 | -4.80 | | | 05 | 1900457 | Active | 155.90 | 150.90 | -5.00 | Projected Groundwater Demands Provided by Producer | | 06 | 1900458 | Inactive | 157.60 | 152.50 | -5.10 | | | 07 | 1902372 | Inactive | 161.90 | 155.40 | -6.50 | | | 08 | 1902373 | Inactive | 163.10 | 156.30 | -6.80 | | | 09 | 1902690 | Active | 161.00 | 154.30 | -6.70 | Projected Groundwater Demands Provided by Producer | | 10 | 1902818 | Active | 155.30 | 149.90 | -5.40 | Projected Groundwater Demands Provided by Producer | | 12 | 1903033 | Active | 158.70 | 150.60 | -8.10 | Projected Groundwater Demands Provided by Producer | | 14 | 1903092 | Inactive | 161.20 | 155.40 | -5.80 | | | FERN | 8000126 | Active | 157.00 | 151.80 | -5.20 | Projected Groundwater Demands Provided by Producer | | 15 | 8000196 | Active | 159.00 | 150.00 | -9.00 | Projected Groundwater Demands Provided by Producer | | MOON VALLEY N | IURSERY (COINER, J
 JAMES W., DB | A COINER NURSE | ERY) | | | | 03 | 1902951 | Inactive | 181.40 | 171.20 | -10.20 | | | 05R | 1903072 | Active | 181.00 | 171.60 | -9.40 | Groundwater Demands Projected by Watermaster | | OWL ROCK PRO | DUCTS COMPANY | | | | | | | NA | 1902241 | Inactive | 206.60 | 185.60 | -21.00 | | | NA | 1903119 | Inactive | 575.20 | 559.90 | -15.30 | Impact from Glendora Extraction | | WELLOD | PECOPDATION | WE! | SIMULATED ELEVATION (1) CHANGE | | CHANCE (A) | DEMARKS | |----------------------|-----------------------|----------------|--------------------------------|----------|----------------------|--| | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | 2019-20 | 2024-25 | CHANGE (2)
(FEET) | REMARKS | | | | | | <u> </u> | | | | POLOPOLUS ET | AL. | | | | | | | 01 | 1902169 | Inactive | 207.20 | 188.80 | -18.40 | | | | | | | | | | | RURBAN HOMES | MUTUAL WATER CO | OMPANY | | | | | | NORTH 1 | 1900120 | Active | 190.70 | 176.20 | -14.50 | Groundwater Demands Projected by Watermaster | | | 400045 | Les et | 400.55 | 4=0.00 | 4.55 | • | | SOUTH 2 | 1900121 | Inactive | 190.30 | 176.00 | -14.30 | | | SAN GABRIEL CO | DUNTRY CLUB | | | | | | | | | | | | | Impact from Alhambra Extraction | | 01 | 1900547 | Active | 140.10 | 139.40 | -0.70 | Groundwater Demands Projected by Watermaster | | SAN GARDIEL CO | OUNTY WATER DISTR | RICT | | | | | | OAH GADRIEL G | JOHN WATER DIST | | | | | | | 05 BRA | 1901669 | Inactive | 151.90 | 149.90 | -2.00 | | | 08 | 1901672 | Inactive | 147.00 | 145.50 | -1.50 | | | - - | - | - | | | , | | | 09 | 1902785 | Active | 143.20 | 142.40 | -0.80 | Projected Groundwater Demands Provided by
Producer | | | | | | | | Hoducei | | 10 | 1902786 | Inactive | 149.60 | 148.50 | -1.10 | | | | | | | | | Projected Groundwater Demands Provided by | | 11 | 8000067 | Active | 151.60 | 149.40 | -2.20 | Producer Producer | | | | | | | | Projected Groundwater Domands Projected by | | 12 | 8000123 | Active | 151.20 | 149.10 | -2.10 | Projected Groundwater Demands Provided by
Producer | | | | | | | | Putunido. La Eliza de | | 14 | 8000133 | Active | 151.20 | 148.10 | -3.10 | Projected Groundwater Demands Provided by
Producer | | | | | | | | | | 15 | 8000220 | Active | 138.80 | 137.10 | -1.70 | Projected Groundwater Demands Provided by | | | | | | | | Producer | | SAN GABRIEL VA | ALLEY WATER COMP | PANY | | | | | | | | | | | | | | G4A | 1900725 | Active | 159.30 | 154.50 | -4.80 | Groundwater Demands Projected by Watermaster | | 54 | 4003635 | lee - 11 | 47470 | 400.00 | 0.70 | | | B1 | 1902635 | Inactive | 174.70 | 166.00 | -8.70 | | | B5A | 1900718 | Inactive | 179.20 | 168.50 | -10.70 | | | B5B | 1900719 | Active | 179.20 | 168.50 | -10.70 | BPOU Extraction Well Projected Groundwater Demands Provided by | | ров | 1500/19 | Active | 1/9.20 | 100.5U | -10.70 | Projected Groundwater Demands Provided by
Producer | | B5C | 8000112 | Inactive | 181.40 | 170.50 | -10.90 | | | | | | | | | BPOU Extraction Well | | B5D | 8000160 | Active | 179.20 | 168.50 | -10.70 | Projected Groundwater Demands Provided by | | | | | | | | Producer | | WELL OR | RECORDATION | WELL | SIMULATED | ELEVATION (1) | CHANGE (2) | REMARKS | |-----------|-------------|----------|-----------|---------------|------------|--| | WELLFIELD | NUMBER | STATUS | 2019-20 | 2024-25 | (FEET) | REWARNS | | B5E | 8000205 | Active | 178.90 | 168.60 | -10.30 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | B25A | 8000187 | Active | 187.10 | 174.70 | -12.40 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | B25B | 8000188 | Active | 187.10 | 174.70 | -12.40 | BPOU Extraction Well Projected Groundwater Demands Provided by Producer | | B26A | 8000189 | Active | 192.50 | 180.50 | -12.00 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | B26B | 8000190 | Active | 192.50 | 180.50 | -12.00 | BPOU Extraction Well Projected Groundwater Demands Provided by Producer | | 8A | 1900736 | Inactive | 165.50 | 158.40 | -7.10 | | | 8B | 1900746 | Active | 164.30 | 157.40 | -6.90 | SEMOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 8C | 1900747 | Active | 162.00 | 155.50 | -6.50 | SEMOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 8D | 1903103 | Active | 161.90 | 155.40 | -6.50 | SEMOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 8E | 8000113 | Active | 162.00 | 155.50 | -6.50 | SEMOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 8F | 8000169 | Active | 164.10 | 157.30 | -6.80 | SEMOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | 1B | 1900729 | Active | 184.80 | 172.20 | -12.60 | Groundwater Demands Projected by Watermaster | | 1C | 1902946 | Inactive | 184.80 | 172.20 | -12.60 | | | 1D | 8000102 | Active | 184.80 | 172.20 | -12.60 | Groundwater Demands Projected by Watermaster | | 1E | 8000172 | Active | 184.80 | 172.30 | -12.50 | Groundwater Demands Projected by Watermaster | | 2D | 1902857 | Active | 186.10 | 169.20 | -16.90 | Groundwater Demands Projected by Watermaster | | 2E | 8000065 | Active | 185.80 | 170.10 | -15.70 | Groundwater Demands Projected by Watermaster | | 2F | 8000197 | Active | 185.80 | 170.10 | -15.70 | Groundwater Demands Projected by Watermaster | | 11A | 1900739 | Active | 177.80 | 168.90 | -8.90 | Groundwater Demands Projected by Watermaster | | WELL OR | RECORDATION | WELL | SIMULATED ELEVATION (1) | | CHANGE (2) | REMARKS | |----------------|----------------|-----------|-------------------------|---------|------------|---| | WELLFIELD | NUMBER | STATUS | 2019-20 | 2024-25 | (FEET) | KEMAKKO | | 11B | 1900745 | Active | 178.00 | 169.20 | -8.80 | Groundwater Demands Projected by Watermaster | | 115 | 1900743 | Active | 178.00 | 109.20 | -0.00 | Gloundwater Demands Projected by Watermaster | | 11C | 1902713 | Active | 178.10 | 169.30 | -8.80 | Groundwater Demands Projected by Watermaster | | B4B | 1902858 | Inactive | 189.70 | 177.90 | -11.80 | | | B4C | 1902947 | Inactive | 189.70 | 177.90 | -11.80 | | | B6C | 1903093 | Inactive | 194.70 | 182.30 | -12.40 | | | B6D | 8000098 | Inactive | 194.70 | 182.30 | -12.40 | | | В7Е | 8000122 | Active | 197.60 | 191.50 | -6.10 | Groundwater Demands Projected by Watermaster | | B2 | 1902525 | Inactive | 174.90 | 166.20 | -8.70 | | | B11A | 1901439 | Destroyed | 196.10 | 188.10 | -8.00 | | | B11B | 8000108 | Active | 196.30 | 188.20 | -8.10 | Groundwater Demands Projected by Watermaster | | В9В | 8000099 | Active | 195.50 | 187.80 | -7.70 | Groundwater Demands Projected by Watermaster | | B24A | 8000203 | Active | 198.70 | 192.80 | -5.90 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | B24B | 8000204 | Active | 198.10 | 192.10 | -6.00 | BPOU Extraction Well
Projected Groundwater Demands Provided by
Producer | | SIERRA LA VERN | E COUNTRY CLUB | | | | | | | 01 | 8000124 | Inactive | 1276.00 | 1217.00 | -59.00 | | | SONOCO PRODU | CTS COMPANY | | | | | | | 02 | 1902971 | Inactive | 186.80 | 176.70 | -10.10 | | | 02 | 8000137 | Active | 186.00 | 175.90 | -10.10 | Groundwater Demands Projected by Watermaster | | SOUTH PASADEN | IA, CITY OF | | | | | | | GRAV 2 | 1901679 | Inactive | 153.30 | 151.30 | -2.00 | | | WIL 2 | 1901681 | Inactive | 143.30 | 142.10 | -1.20 | | | WIL 3 | 1901682 | Active | 139.50 | 138.30 | -1.20 | Projected Groundwater Demands Provided by Producer | | WIL 4 | 1903086 | Active | 141.40 | 140.30 | -1.10 | Projected Groundwater Demands Provided by Producer | | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | SIMULATED E
2019-20 | LEVATION (1)
2024-25 | CHANGE (2)
(FEET) | REMARKS | |---|-----------------------|----------------|------------------------|-------------------------|----------------------|---| | *************************************** | NODER | JIAIOO | 2010-20 | EVE-T-20 | , ,. <u></u> :/ | | | SOUTHERN CALII | FORNIA EDISON CO | MPANY | | | | | | 110RH | 8000046 | Active | 202.90 | 184.00 | -18.90 | Groundwater Demands Projected by Watermaster | | STERLING MUTUA | AL WATER COMPAN | IY | | | | | | | | | | | | | | NEW SO. | 8000132 | Active | 185.30 | 173.30 | -12.00 | Groundwater Demands Projected by Watermaster | | | | | | | | | | NORTH | 1902096 | Active | 185.30 | 173.30 | -12.00 | Groundwater Demands Projected by Watermaster | | | | | | | | | | SUBURBAN WATI | ER SYSTEMS | | | | | | | 121W-1 | 8000181 | Active | 201.60 | 191.10 | -10.50 | Projected Groundwater Demands Provided by | | 12111 1 | 0000101 | 7,00,70 | 201.00 | 151.10 | 20.00 | Producer | | 125W-2 | 8000087 | Inactive | 224.20 | 220.50 | -3.70 | | | 126W-2 | 8000092 | Inactive | 225.80 | 222.40 | -3.40 | | | 139W-2 | 1901599 | Inactive | 201.20 | 187.80 | -13.40 | | | 42014.4 | 000000 | Ct III- | 204.20 | 407.70 | 42.50 | | | 139W-4 | 8000069 | Standby | 201.20 | 187.70 | -13.50 | | | 139W-5 | 8000095 | Inactive | 201.00 | 187.60 | -13.40 | | | 139W-6 | 8000152 | Inactive | 201.10 | 188.00 | -13.10 | | | 140W-3 | 1903067 | Standby | 195.30 | 184.60 | -10.70 | | | 140W-4 | 8000093 | Inactive | 195.30 | 184.60 | -10.70 | | | | | | | | | Projected Groundwater Demands Provided by | | 140W-5 | 8000145 | Active | 195.20 | 184.40 | -10.80 | Producer | | 142W-2 | 8000183 | Active | 197.80 | 184.90 | -12.90 | Projected Groundwater Demands Provided by | | 14200-2 | 8000183 | Active | 197.60 | 164.50 | -12.90 | Producer | | 151W-2 | 8000207 | Active | 197.50 | 187.30 | -10.20 | Projected Groundwater Demands Provided by | | 10111 | 000207 |
7,00.70 | 237.30 | 207.00 | 10.20 | Producer | | 155W-1 | 1902819 | Inactive | 251.70 | 262.20 | 10.50 | | | | | | | | | Projected Groundwater Demands Provided by | | 201W-9 | 8000208 | Active | 169.90 | 160.30 | -9.60 | Producer | | 201W-4 | 1901433 | Inactive | 170.30 | 160.90 | -9.40 | | | | | | | | | Projected Groundwater Demands Provided In- | | 201W-7 | 8000195 | Active | 170.10 | 159.50 | -10.60 | Projected Groundwater Demands Provided by
Producer | | | | | | | | Projected Groundwater Demands Provided by | | 201W-8 | 8000198 | Active | 170.00 | 160.60 | -9.40 | Producer Producer | | | | | | | | Projected Groundwater Demands Provided by | | 201W-10 | 8000210 | Active | 170.30 | 160.00 | -10.30 | Producer Producer | | | | | | | | | | WELLOR | PECOPDATION | WELL | SIMULATED ELEVATION (1) | | CHANGE (2) | DEMARKS | | |----------------------|-----------------------|----------------|-------------------------|---------|----------------------|---|--| | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | 2019-20 | 2024-25 | CHANGE (2)
(FEET) | REMARKS | | | SUNNY SLOPE W | ATER COMPANY | | | | | | | | 08 | 1900026 | Active | 140.80 | 139.40 | -1.40 | Groundwater Demands Projected by Watermaster | | | 09 | 1902792 | Active | 144.30 | 143.00 | -1.30 | Groundwater Demands Projected by Watermaster | | | 10 | 8000048 | Inactive | 159.20 | 158.00 | -1.20 | | | | 13 | 8000157 | Active | 146.90 | 146.00 | -0.90 | Groundwater Demands Projected by Watermaster | | | TYLER NURSERY | , | | | | | | | | NA | 8000049 | Inactive | 174.30 | 165.70 | -8.60 | | | | UNITED ROCK PF | RODUCTS CORPORA | ATION | | | | | | | IRW-1 | 1900106 | Active | 207.20 | 184.90 | -22.30 | Groundwater Demands Projected by Watermaster | | | IRW-2 | 1903062 | Active | 207.20 | 184.80 | -22.40 | Groundwater Demands Projected by Watermaster | | | UNITED STATES | ENVIRONMENTAL P | ROTECTION A | GENCY | | | | | | EW4-3 | EPAEW403 | Remedial | 170.50 | 162.90 | -7.60 | WNOU Extraction (Inactive) | | | EW4-4 | EPAEW404 | Remedial | 169.90 | 162.20 | -7.70 | WNOU Extraction (Inactive) | | | EW4-5 | EPAEW405 | Remedial | 169.50 | 161.50 | -8.00 | WNOU Extraction (Active)
Groundwater Demands Projected by Watermaster | | | EW4-9 | EPAEW409 | Remedial | 169.50 | 161.50 | -8.00 | WNOU Extraction (Inactive) | | | EW4-6 | 8000201 | Remedial | 168.60 | 161.00 | -7.60 | WNOU Extraction (Active) Groundwater Demands Projected by Watermaster | | | EW4-7 | EPAEW407 | Remedial | 169.90 | 162.30 | -7.60 | WNOU Extraction (Active)
Groundwater Demands Projected by Watermaster | | | EW4-8 | EPAEW408 | Remedial | 170.60 | 163.10 | -7.50 | WNOU Extraction (Inactive) | | | VALENCIA HEIGH | ITS WATER COMPA | NY | | | | | | | 01 | 8000051 | Inactive | 231.60 | 229.70 | -1.90 | | | | 02 | 8000052 | Inactive | 231.60 | 229.70 | -1.90 | | | | 03A | 8000055 | Inactive | 238.90 | 238.30 | -0.60 | | | | 04 | 8000054 | Inactive | 224.50 | 218.80 | -5.70 | | | | 05 | 8000120 | Active | 239.80 | 239.30 | -0.50 | Projected Groundwater Demands Provided by Producer | | | 06 | 8000180 | Active | 231.90 | 229.90 | -2.00 | Projected Groundwater Demands Provided by Producer | | | 07 | 8000211 | Active | 240.00 | 239.50 | -0.50 | Projected Groundwater Demands Provided by Producer | | | VALLEY COUNTY | WATER DISTRICT | | | | | | | | E MAINE | 1900027 | Active | 207.00 | 186.50 | -20.50 | Projected Groundwater Demands Provided by
Producer and Adjusted by Watermaster | | | | | | OIMIU ATED | OMNU ATER ELEVATION (III | | | | |----------------------|-----------------------|----------------|------------|--------------------------|----------------------|--|--| | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | 2019-20 | 2024-25 | CHANGE (2)
(FEET) | REMARKS | | | W MAINE | 1900028 | Active | 207.00 | 186.50 | -20.50 | Projected Groundwater Demands Provided by
Producer and Adjusted by Watermaster | | | MORADA | 1900029 | Inactive | 217.30 | 198.80 | -18.50 | | | | E NIXON (JOAN) | 1900032 | Active | 206.50 | 185.90 | -20.60 | Projected Groundwater Demands Provided by Producer and Adjusted by Watermaster | | | W NIXON (JOAN) | 1902356 | Active | 206.40 | 185.80 | -20.60 | Projected Groundwater Demands Provided by
Producer and Adjusted by Watermaster | | | ARROW | 1900034 | Inactive | 211.40 | 189.30 | -22.10 | BPOU Extraction | | | LANTE (SA1-3) | 8000060 | Active | 210.60 | 189.20 | -21.40 | Projected Groundwater Demands Provided by
Producer and Adjusted by Watermaster | | | PALM | 8000039 | Inactive | 199.70 | 184.40 | -15.30 | | | | B DALTON | 1900035 | Inactive | 200.60 | 186.50 | -14.10 | | | | PADDY LN | 1900031 | Inactive | 196.70 | 183.40 | -13.30 | | | | SA1-1 | 8000185 | Active | 212.70 | 192.70 | -20.00 | BPOU Extraction
Projected Groundwater Demands Provided by
Producer and Adjusted by Watermaster | | | SA1-2 | 8000186 | Standby | 210.80 | 191.50 | -19.30 | BPOU Extraction
Projected Groundwater Demands Provided by
Producer and Adjusted by Watermaster | | | VALLEY VIEW MU | TUAL WATER COM | PANY | | | | | | | 01 | 1900363 | Inactive | 200.20 | 183.20 | -17.00 | | | | 02 | 1900364 | Active | 200.20 | 183.20 | -17.00 | Projected Groundwater Demands Provided by Producer | | | VULCAN MATERIA | ALS COMPANY (CA | LMAT COMPAN | Y) | | | | | | REL 1 | 1903088 | Active | 226.00 | 198.00 | -28.00 | Groundwater Demands Projected by Watermaster | | | WHITTIER, CITY O | F | | | | | | | | 13 | 1901749 | Active | 171.10 | 161.80 | -9.30 | Groundwater Demands Projected by Watermaster | | | 15 | 8000071 | Active | 170.70 | 161.40 | -9.30 | Groundwater Demands Projected by Watermaster | | | 16 | 8000110 | Active | 170.40 | 161.40 | -9.00 | Groundwater Demands Projected by Watermaster | | | 17 | 8000135 | Active | 170.50 | 161.50 | -9.00 | Groundwater Demands Projected by Watermaster | | | 18 | 8000136 | Active | 170.00 | 161.30 | -8.70 | Groundwater Demands Projected by Watermaster | | | WELL OR
WELLFIELD | RECORDATION
NUMBER | WELL
STATUS | SIMULATED E
2019-20 | LEVATION (1)
2024-25 | CHANGE (2)
(FEET) | REMARKS | | | | |---|--|----------------|------------------------|-------------------------|----------------------|---------|--|--|--| | | VORKMAN MILL INVESTMENT COMPANY (RINCON DITCH COMPANY) | | | | | | | | | | 04 | 1902790 | Inactive | 170.80 | 161.70 | -9.10 | | | | | | WORKMAN MILL INVESTMENT COMPANY (RINCON IRRIGATION COMPANY) | | | | | | | | | | | 02 | 1900095 | Inactive | 171.10 | 161.90 | -9.20 | | | | | | WORKMAN MILL I | NVESTMENT COMP | ANY (ROSE H | ILLS MEMORIAL F | PARK) | | | | | | | 03 | 1900052 | Inactive | 171.00 | 161.80 | -9.20 | | | | | | 01 | 1900094 | Inactive | 170.70 | 161.70 | -9.00 | | | | | | | | | -11.20 | | | | | | | ⁽¹⁾ SIMULATED ELEVATION IN FEET ABOVE MEAN SEA LEVEL ⁽²⁾ DIFFERENCE BETWEEN 2024-25 AND 2019-20 SIMULATED ELEVATIONS ## APPENDIX C. HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS AND NITRATE CONCENTRATIONS AND WELLS VULNERABLE TO CONTAMINATION C HIGHLIGHTS OF VOLATILE ORGANIC COMPOUNDS, NITRATE, AND PERCHLORATE CONCENTRATIONS AND WELLS VULNERABLE TO CONTAMINATION (AS OF MAY 31, 2020) APPENDIX C | | | | CONCENTRAT | | | | | | | |-------------|-----------------|----------------|---------------------|-------------|----------------|------------|----------------|---|--| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTORI | C HIGH | MOST R | RECENT | REMARKS | | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | 447 SAN GAD | DIEL CANVONILLO | WIETNAMESE AM | ERICAN BUDDHIST C | ONGREGATIO | N TEMPIE | | | | | | 447 SAN GAD | RIEL CANTON LLC | (VIETNAMESE AM | ERICAN BUDDHIST C | ONGREGATIO | JN IEWIPLE) | | | | | | IETNAMESE | IRRIGATION | ACTIVE | VOCS | NA | NA | NA | NA | | | | TEMPLE | | | NITRATE (N) | NA | NA | NA | NA | | | | | | | CLO4 | NA | NA | NA | NA | | | | DAMS RANCH | H MUTUAL WATER | COMPANY | | | | | | | | | 01 | MUNICIPAL | INACTIVE | TCE | 2.2 | 05/88 | ND | 02/97 | | | | | | | NITRATE (N) | 21.9 | 04/92 | 8.8 | 02/97 | | | | | | | CLO4 | NA | NA | NA | NA | | | | 02 | MUNICIPAL | INACTIVE | TCE | 3.5 | 08/86 | 2.5 | 09/86 | | | | 02 | | | NITRATE (N) | NA | NA | NA | NA | | | | | | | CLO4 | NA | NA | NA | NA | | | | 03 | MUNICIDAL | INACTIVE | TCE | 22.0 | 05/15 | 14.0 | 02/16 | | | | 03 | 03 MUNICIPAL | INACTIVE | PCE | 10.0 | 05/15 | 6.6 | 02/16 | | | | | | | NITRATE (N) | 4.7 | 03/04 | 4.5 | 05/15 | | | | | | | CLO4 | ND | 08/08 | ND | 02/16 | | | | | | | AS | ND | 05/03 | ND | 05/15 | | | | | | | CR6 | 1.1 | 08/13 | 1.1 | 08/13 | | | | HAMBRA, C | ITY OF | | | | | | | | | | * | | | T C- | 44- | 0.4/:- | | 0.44:- | | | | 07 | MUNICIPAL | INACTIVE | TCE | 14.0 | 04/18 | 14.0 | 04/18 | VULNERABLE | | | | | | PCE | 8.0 | 04/07 | 0.6 | 04/18 | (VOC, NO3(N)) | | | | | | C-1,2-DCE | 2.0 | 04/18 | 2.0 | 04/18 | | | | | | | CTC | 0.6 | 02/85 | ND
12.0 | 04/18 | | | | | | | NITRATE (N)
CLO4 | 12.0
2.4 | 04/18
10/07 | 12.0
ND | 04/18
04/18 | | | | | | | AS | 0.7 | 07/96 | ND | 05/17 | | | | | | | CR6 | 9.0 | 07/90 | 8.3 | 05/17 | | | | 00 | MUNICIDAL | CTANDDY | TOF | 04.4 | 00/00 | 44.0 | 05/00 | VIII NEDADI E | | | 09 | MUNICIPAL | STANDBY | TCE | 21.1 | 08/08 | 14.0 | 05/20 | VULNERABLE | | | | | | C-1,2-DCE | 2.3 | 10/07 | 1.9 | 05/20 | (VOC, NO3(N),CLO4) | | | | | | NITRATE (N)
CLO4 | 14.0
4.7 | 12/16
02/14 | 10.0
ND | 01/20
05/17 | | | | | | | AS | 0.9 | 07/96 | ND | 01/20 | | | | | | | CR6 | 5.7 | 12/05 | 4.0 | 01/20 | | | | 10 | IRRIGATION | INACTIVE | TCE | 30.1 | 02/09 | 22.0 | 10/10 | | | | 10 | INNIGATION | INACTIVE | C-1,2-DCE | 5.8 | 03/05 | ND | 10/10 | | | | | | | 1,1-DCE | 0.5 | 03/05 | ND |
10/10 | | | | | | | NITRATE (N) | 12.7 | 01/07 | 12.4 | 10/10 | | | | | | | CLO4 | ND | 08/97 | ND | 08/97 | | | | 11 | MUNICIPAL | ACTIVE | PCE | 4.7 | 05/12 | 3.3 | 05/20 | VULNERABLE | | | 1.1 | MOMON AL | AUTIVE | TCE | 4.7 | 05/12 | 3.3
0.6 | 05/20 | (VOC,NO3(N)) | | | | | | C-1,2-DCE | 1.5 | 04/08 | ND | 07/19 | (************************************** | | | | | | NITRATE (N) | 10.8 | 10/12 | 8.6 | 04/18 | | | | | | | CLO4 | ND | 08/97 | ND | 05/20 | | | | | | | AS | 0.8 | 07/96 | ND | 04/18 | | | | | | | CR6 | 7.7 | 06/01 | 6.9 | 04/18 | | | | 12 | MUNICIPAL | STANDBY | TCE | 39.4 | 08/08 | 18.0 | 07/19 | VULNERABLE | | | | | | PCE | 1.7 | 01/14 | 1.5 | 05/20 | (VOC,NO3(N)) | | | | | | C-1,2-DCE | 41.0 | 05/17 | 34.0 | 07/19 | | | | | | | 1,1-DCE | 8.0 | 09/08 | 0.7 | 05/20 | | | | | | | T-1,2-DCE | 0.9 | 09/08 | 0.6 | 05/20 | | | | | | | NITRATE (N) | 9.5 | 01/14 | 6.9 | 09/17 | | | | | | | CLO4 | ND | 08/08 | ND | 05/20 | | | | | | | AS
CR6 | ND
4.5 | 08/89
09/17 | ND
4.5 | 09/17
09/17 | | | | | | | | | | | | | | | 13 | IRRIGATION | ACTIVE | TCE | 0.5 | 08/07 | ND | 04/14 | | | | | | | NITRATE (N) | 13.3 | 07/13 | 13.3 | 07/13 | | | | | | | CLO4 | ND | 03/97 | ND | 01/14 | | | | | | | AS | 8.0
7.1 | 06/78
08/01 | ND
4.6 | 11/10
09/13 | | | | | | | CRn | /.! | | | | | | | 44 | MUNICIPA | 4 OT": " | CR6 | | | | | \#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | 14 | MUNICIPAL | ACTIVE | TCE
NITRATE (N) | 2.4
10.4 | 08/08
08/12 | 1.0 | 10/19
10/19 | VULNERABLE
(NO3(N)) | | | | | | CONCENTRA | TION (NITRAT | E IN MG/L | OTHERS IN | UG/L) | | |--------------|------------------|-----------|---------------------|--------------|----------------|------------|----------------|---| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | AS | 0.6 | 07/96 | ND | 10/19 | | | | | | CR6 | 5.8 | 06/01 | 4.9 | 10/19 | | | 15 | MUNICIPAL | ACTIVE | PCE | 0.8 | 10/14 | ND | 05/20 | VULNERABLE | | | | | NITRATE (N) | 6.3 | 10/12 | 1.9 | 04/19 | (NO3(N)) | | | | | CLO4 | ND | 08/97 | ND | 05/20 | | | | | | AS
CR6 | 1.5
4.1 | 07/96
12/00 | ND
3.1 | 04/19
04/19 | | | | | | | | | | | | | GARF | MUNICIPAL | INACTIVE | TCE
PCE | 11.0
0.5 | 08/82
11/87 | ND
ND | 09/93
09/93 | | | | | | CTC | 0.5 | 04/80 | ND | 09/93 | | | | | | 1,1,2,2-PCA | 1.0 | 11/87 | ND | 09/93 | | | | | | NITRATE (N) | 15.4 | 08/89 | 12.1 | 09/93 | | | | | | AS
CLO4 | ND
NA | 06/80
NA | ND
NA | 08/92
NA | | | 1.001.4 | MUNICIDAL | A OT!\ /E | B0E | 0.5 | 05/00 | 0.5 | 05/00 | \(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | LON 1 | MUNICIPAL | ACTIVE | PCE
NITRATE (N) | 0.5
7.5 | 05/20
09/11 | 0.5
6.8 | 05/20
07/19 | VULNERABLE
(NO3(N),CLO4) | | | | | CLO4 | 5.0 | 12/97 | ND | 05/20 | (*****(***,**************************** | | | | | AS | 2.4 | 07/95 | ND | 07/19 | | | | | | CR6 | 7.2 | 06/01 | 6.4 | 07/19 | | | LON 2 | MUNICIPAL | ACTIVE | PCE | 1.3 | 06/10 | 1.1 | 05/20 | VULNERABLE | | | | | NITRATE (N) | 11.4 | 04/86 | 6.0 | 05/20 | (NO3(N),CLO4) | | | | | CLO4
AS | 5.6
0.8 | 07/97
07/96 | ND
ND | 12/19
05/20 | | | | | | CR6 | 9.5 | 06/01 | 8.6 | 05/20 | | | MOEL (8) | MUNICIPAL | ACTIVE | TCE | 23.0 | 07/14 | 11.0 | 07/19 | VULNERABLE | | MOLE (0) | MONION AL | 7.01172 | PCE | 1.6 | 07/08 | 0.6 | 04/20 | (VOC,NO3(N)) | | | | | C-1,2-DCE | 2.6 | 05/17 | 1.7 | 04/20 | | | | | | NITRATE (N)
CLO4 | 17.2
ND | 07/08
12/99 | 12.0
ND | 07/17
04/20 | | | | | | AS | 0.9 | 07/96 | ND | 07/17 | | | | | | CR6 | 7.2 | 07/17 | 7.2 | 07/17 | | | AMARILLO MU | ITUAL WATER CO | MPANY | | | | | | | | 01 | MUNICIPAL | ACTIVE | PCE | 5.5 | 10/99 | 2.9 | 01/20 | VULNERABLE | | 01 | MONION AL | AOTIVE | TCE | 3.3 | 11/18 | 0.7 | 01/20 | (VOC,NO3(N)) | | | | | CTC | 0.1 | 08/82 | ND | 01/20 | | | | | | NITRATE (N)
CLO4 | 6.2
ND | 10/99
08/97 | 3.6
ND | 01/20
01/20 | | | | | | AS | 0.5 | 07/96 | ND | 08/19 | | | | | | CR6 | 8.6 | 08/16 | 5.5 | 08/19 | | | 02 | MUNICIPAL | INACTIVE | PCE | 6.3 | 08/16 | 5.7 | 11/19 | VULNERABLE | | | | | TCE | 3.1 | 05/18 | 2.6 | 11/19 | (VOC,NO3(N)) | | | | | NITRATE (N)
CLO4 | 6.8
ND | 02/96
08/97 | 4.9
ND | 11/19
08/19 | | | | | | AS | 0.4 | 07/96 | ND | 08/19 | | | | | | CR6 | 8.7 | 08/19 | 8.7 | 08/19 | | | ANDERSON FA | AMILY MARITAL TI | RUST | | | | | | | | 01 | DOMESTIC | INACTIVE | vocs | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | ARCADIA, CIT | Y OF | | | | | | | | | BAL 1 | MUNICIPAL | DESTROYED | vocs | ND | 09/98 | ND | 09/98 | | | | | | NITRATE (N) | 11.7 | 04/78 | 0.7 | 09/98 | | | | | | CLO4 | NA | NA | NA | NA | | | BAL 2 | MUNICIPAL | INACTIVE | VOCS | ND | 05/89 | ND | 06/09 | | | | | | NITRATE (N) | 7.5 | 05/08 | 6.3 | 06/09 | | | | | | CLO4
AS | ND
0.7 | 08/97
08/96 | ND
ND | 07/08
03/09 | | | | | | CR6 | 11.1 | 06/01 | 11.1 | 06/01 | | | CAM REAL 1 | MUNICIPAL | DESTROYED | VOCS | ND | 01/85 | ND | 05/92 | | | OMINI NEML I | WONGFAL | DEGINOTED | NITRATE (N) | 6.3 | 05/91 | 5.1 | 08/92 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 03/09 | ND | 08/92 | | | CAM REAL 2 | MUNICIPAL | DESTROYED | VOCS | ND | 05/89 | ND | 06/98 | | | | | | NITRATE (N) | 13.1 | 05/92 | 8.8 | 05/98 | | | | | | | | | | | | | | | <u> </u> | CONCENTRA | TION (NITRATI | FIN MG/L / | OTHERS IN I | IG/L) | | |--------------|------------|-------------|---------------------|---------------|----------------|-------------|----------------|--------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | | | RECENT | REMARKS | | WEELTVAME | OUNCE | SIAISS | OF CONCERN | VALUE | DATE | VALUE | DATE | REMPRITO | | | | | CLO4 | ND | 08/97 | ND | 12/97 | | | | | | AS | 0.4 | 08/96 | ND | 06/98 | | | | | | | | | | | | | CAM REAL 3 | MUNICIPAL | ACTIVE | VOCS | ND | 03/11 | ND | 10/19 | | | | | | NITRATE (N)
CLO4 | 4.4
ND | 01/16
03/11 | 4.3
ND | 04/20
07/19 | | | | | | AS | ND | 03/11 | ND | 07/19 | | | | | | CR6 | 8.3 | 01/19 | 8.3 | 01/19 | | | | | 1 OT!! /F | 205 | | 0.4/0.0 | | 0.4447 | | | L OAK 1 | MUNICIPAL | ACTIVE | PCE
TCE | 1.4
10.0 | 01/08
07/18 | ND
10.0 | 04/17
07/18 | VULNERABLE | | | | | NITRATE (N) | 7.0 | 05/15 | 6.5 | 07/18 | (VOC,NO3(N)) | | | | | CLO4 | ND | 08/97 | ND | 07/18 | | | | | | AS | 0.6 | 08/96 | ND | 04/17 | | | | | | CR6 | 3.1 | 04/17 | 3.1 | 04/17 | | | LGY | MUNICIPAL | DESTROYED | VOCS | ND | 01/08 | ND | 01/08 | | | LGT | MUNICIPAL | DESTROTED | NITRATE (N) | 23.5 | 01/08 | 23.5 | 01/08 | | | | | | CLO4 | 6.0 | 01/08 | 6.0 | 01/08 | | | | | | | | | | | | | LGY 3 | MUNICIPAL | ACTIVE | VOCS | ND | 06/11 | ND | 10/19 | | | | | | NITRATE (N)
CLO4 | 2.4
ND | 01/20
06/11 | 2.4
ND | 01/20
07/19 | | | | | | AS | ND | 03/11 | ND | 01/19 | | | | | | CR6 | 8.7 | 01/17 | 8.1 | 01/20 | | | | | | | | | | | | | LON 1 | MUNICIPAL | ACTIVE | TCE | 30.0 | 07/87 | ND | 04/20 | VULNERABLE | | | | | PCE | 3.1 | 04/19 | ND | 04/20 | (VOC,NO3(N)) | | | | | 1,1-DCE
1,2-DCA | 4.1
1.4 | 06/87
07/87 | ND
ND | 07/19
07/19 | | | | | | 1,1,1-TCA | 4.6 | 07/87 | ND | 07/19 | | | | | | NITRATE (N) | 14.0 | 07/16 | 1.8 | 04/20 | | | | | | CLO4 | ND | 12/97 | ND | 07/19 | | | | | | AS | ND | 04/85 | ND | 04/20 | | | | | | CR6 | 3.3 | 06/17 | 1.5 | 04/20 | | | LON 2 | MUNICIPAL | ACTIVE | TCE | 62.0 | 01/85 | 1.4 | 04/20 | VULNERABLE | | | | | PCE | 7.7 | 01/82 | 0.6 | 04/20 | (VOC,NO3(N)) | | | | | CTC | 2.6 | 09/87 | ND | 07/19 | | | | | | 1,1-DCE | 0.9 | 05/87 | ND | 07/19 | | | | | | 1,1,1-TCA | 12.0 | 01/85 | ND | 07/19
04/20 | | | | | | NITRATE (N)
CLO4 | 24.6
ND | 05/85
07/97 | 7.9
ND | 04/20 | | | | | | AS | 0.7 | 08/96 | ND | 01/16 | | | | | | CR6 | 4.7 | 01/16 | 4.7 | 01/16 | | | | | | | | | | | | | PECK 1 | MUNICIPAL | ACTIVE | VOCS
NITRATE (N) | ND
2.5 | 05/89
08/09 | ND
0.6 | 04/20
04/20 | | | | | | CLO4 | 2.5
ND | 08/97 | ND | 04/20 | | | | | | AS | 2.4 | 09/94 | ND | 04/20 | | | | | | CR6 | 1.0 | 11/00 | ND | 04/20 | | | 07.10.4 | | DE0770\/FD | T05 | | 0.1/0.0 | 4.0 | 00/00 | | | ST JO 1 | MUNICIPAL | DESTROYED | TCE
PCE | 5.4
2.7 | 01/02
08/91 | 4.8
2.2 | 02/02
02/02 | | | | | | NITRATE (N) | 13.6 | 06/96 | 10.4 | 06/02 | | | | | | CLO4 | 1.0 | 08/97 | ND | 01/02 | | | | | | AS | 0.3 | 08/96 | ND | 06/01 | | | 07.10.0 | MUNICIPAL | INIA OTIVIE | TOF | 0.4 | 40/00 | 4.4 | 07/47 | | | ST JO 2 | MUNICIPAL | INACTIVE | TCE
PCE | 2.4
9.8 | 12/09
09/16 | 1.1
7.8 | 07/17
07/17 | | | | | | NITRATE (N) | 11.5 | 12/04 | 10.0 | 07/17 | | | | | | CLO4 | 8.6 | 06/02 | ND | 07/17 | | | | | | AS | ND | 06/02 | ND | 04/17 | | | | | | CR6 | 3.2 | 11/02 | 2.6 | 04/17 | | | ATTALLA, MAR | RY L. | | | | | | | | | NA | IRRIGATION | INACTIVE | VOCS | ND | 09/96 | ND | 04/98 | | | IVA | INTOATION | MACTIVE | NITRATE (N) | 4.4 | 04/98 | 4.4 | 04/98 | | | | | | CLO4 | ND | 04/98 | ND | 04/98 | | | AZUSA ASSOC | CIATES LLC | | | | | | | | | | | INIA OTIVE | V000 | ND | 03/00 | ND | 03/00 | | | DALTON | IRRIGATION | INACTIVE | VOCS
NITRATE (N) | ND
1.1 | 03/98
03/98 | ND
1.1 | 03/98
03/98 | | | | | | CLO4 | ND | 03/98 | ND | 03/98 | | | | | | | | | | | | AZUSA, CITY OF | | | | CONCENTRA | TION (NITRAT | E IN MG/L, O | OTHERS IN I | JG/L) | | |-----------------------|--------------|-------------|---------------------|--------------|----------------|-------------|----------------|------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | IC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | 1 | | | | | | • | | | | | | AVWC 01 | MUNICIPAL | DESTROYED | VOCS | ND | 09/97 | ND | 09/97 | | | | | | NITRATE (N) | 12.4 | 08/87 | 7.3 | 09/97 | | | | | | CLO4 | 5.6 | 09/97 | 5.6 | 09/97 | | | | | | | | | | | | | AVWC 02 | MUNICIPAL |
DESTROYED | VOCS | ND | 01/98 | ND | 01/98 | | | | | | NITRATE (N) | 9.7 | 01/98 | 9.7 | 01/98 | | | | | | CLO4 | 6.9 | 01/98 | 6.9 | 01/98 | | | AVWC 07 | MUNICIPAL | DESTROYED | TCE | 4.5 | 01/80 | ND | 03/85 | | | 7.11.0 0. | | 5201110125 | NITRATE (N) | 24.2 | 02/77 | 8.9 | 12/85 | | | | | | CLO4 | NA | NA | NA | NA | | | 05115010.4 | | DE07700//ED | | | 44/00 | | 4.4/0.0 | | | GENESIS 1 | MUNICIPAL | DESTROYED | MTBE | 1.2
28.6 | 11/98
06/87 | 1.1
24.8 | 11/98 | | | (OLD 04) | | | NITRATE (N)
CLO4 | 7.2 | 11/98 | 7.2 | 11/98
11/98 | | | | | | AS | 5.0 | 08/79 | ND | 02/88 | | | | | | | | | | | | | GENESIS 2 | MUNICIPAL | INACTIVE | TCE | 250.0 | 12/79 | 3.7 | 02/08 | | | (OLD 05) | | | PCE
1,1-DCE | 95.0
18.0 | 04/80
02/08 | 1.0
18.0 | 02/08
02/08 | | | | | | 1,1,1-TCA | 2.5 | 02/08 | 2.5 | 02/08 | | | | | | NITRATE (N) | 23.8 | 02/93 | 3.6 | 02/08 | | | | | | CLO4 | ND | 11/98 | ND | 02/08 | | | | | | AS | ND | 12/89 | ND | 02/08 | | | OFNEOIO O | MUNICIPAL | DECTROVER | DOE | 0.5 | 00/07 | ND | 00/07 | | | GENESIS 3
(OLD 06) | MUNICIPAL | DESTROYED | PCE
TCE | 3.5
0.1 | 03/97
01/80 | ND
ND | 03/97
03/97 | | | (OLD 00) | | | NITRATE (N) | 25.5 | 06/86 | ND | 04/01 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | 01 | MUNICIPAL | ACTIVE | VOCS | ND | 06/87 | ND | 11/19 | VULNERABLE | | (OLD 07) | | | NITRATE (N) | 1.2
ND | 08/17
07/97 | 0.4 | 08/19 | (AS) | | | | | CLO4
AS | ND
5.1 | 08/95 | ND
2.3 | 08/19
08/19 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/19 | | | | | | | | | | | | | 02 | MUNICIPAL | ACTIVE | VOCS | ND | 06/89 | ND | 09/19 | | | (01 NORTH) | | | NITRATE (N)
CLO4 | 1.2
ND | 03/92
07/97 | ND
ND | 09/19
09/19 | | | | | | AS | 4.3 | 07/96 | 4.1 | 08/17 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/17 | | | | | | | | | | | | | 03 | MUNICIPAL | ACTIVE | VOCS | ND | 06/87 | ND | 08/19 | | | (OLD 08) | | | NITRATE (N)
CLO4 | 1.0
ND | 03/95
07/97 | ND
ND | 08/19
08/19 | | | | | | AS | 5.0 | 08/06 | 3.5 | 08/18 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/15 | | | | | | | | | | | | | 04
(02 SOUTH) | MUNICIPAL | ACTIVE | VOCS | ND
1.2 | 06/88
06/89 | ND
ND | 08/19
08/19 | | | (02 300111) | | | NITRATE (N)
CLO4 | ND | 07/97 | ND | 08/19 | | | | | | AS | 5.0 | 08/05 | 4.5 | 08/17 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/17 | | | 0.5 | | 4.OT!! (F | T05 | | 40/00 | | 05/00 | | | 05
(OLD 01) | MUNICIPAL | ACTIVE | TCE
PCE | 1.0
0.3 | 12/80
12/80 | ND
ND | 05/20
05/20 | VULNERABLE
(NO3(N)) | | (OLD 01) | | | NITRATE (N) | 5.2 | 07/95 | 2.5 | 08/19 | (NO3(N)) | | | | | CLO4 | ND | 07/97 | ND | 05/20 | | | | | | AS | 2.6 | 07/95 | ND | 08/19 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/19 | | | 06 | MUNICIPAL | ACTIVE | VOC6 | ND | 02/05 | ND | 00/10 | | | 06
(OLD 03) | WONCIPAL | ACTIVE | VOCS
NITRATE (N) | ND
3.2 | 03/85
03/95 | ND
1.0 | 08/19
08/19 | | | (022 00) | | | CLO4 | ND | 07/97 | ND | 08/19 | | | | | | AS | 3.5 | 07/95 | ND | 08/19 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/19 | | | 07 | MUNICIPAL | ACTIVE | vocs | ND | 06/88 | ND | 08/19 | VULNERABLE | | (AVWC 05) | IVIOINICIPAL | ACTIVE | NITRATE (N) | 5.6 | 06/88 | 1.8 | 08/19 | (NO3(N)) | | (| | | CLO4 | ND | 06/97 | ND | 08/19 | (1100(11)) | | | | | AS | 3.5 | 08/14 | 2.2 | 08/17 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/17 | | | 00 | MUNICIPAL | ACTIVE | TOE | Λ 0 | 03/04 | ND | 08/19 | | | 08
(AVWC 04) | WUNICIPAL | ACTIVE | TCE
NITRATE (N) | 0.8
2.7 | 03/94
09/94 | ND
1.6 | 08/19 | | | (, | | | CLO4 | ND | 07/97 | ND | 08/19 | | | | | | AS | 4.2 | 07/95 | ND | 08/19 | | | | | | CR6 | 1.0 | 11/00 | ND | 08/19 | | | | | | | | | | | | | | | | CONCENTRA | TION (NITRAT | E IN MG/L | OTHERS IN I | JG/L) | | |---------------|------------------|-----------------|---------------------|--------------|----------------|-------------|----------------|---------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | | | | | | | | 09 | MUNICIPAL | INACTIVE | PCE | 7.4 | 12/87 | 0.6 | 01/99 | | | (AVWC 06) | | | NITRATE (N) | 26.6 | 12/89 | 19.0 | 01/99 | | | | | | CLO4
AS | NA
ND | NA
02/87 | NA
ND | NA
01/99 | | | | | | 7.6 | 5 | 02,01 | .,,, | 0.700 | | | 10 | MUNICIPAL | ACTIVE | PCE | 1.0 | 05/15 | 0.6 | 05/20 | VULNERABLE | | (AVWC 08) | | | NITRATE (N)
CLO4 | 14.9
12.6 | 05/08
08/05 | 11.0
6.8 | 05/20
05/20 | (NO3(N),CLO4) | | | | | AS | 1.8 | 07/96 | ND | 11/18 | | | | | | CR6 | 2.5 | 11/15 | 2.5 | 11/15 | | | 11 | MUNICIPAL | ACTIVE | VOCS | ND | 06/02 | ND | 08/19 | | | • • • | MONION AL | NOTIVE | NITRATE (N) | 0.8 | 08/08 | 0.4 | 08/19 | | | | | | CLO4 | ND | 06/02 | ND | 08/19 | | | | | | AS | 4.0 | 08/05 | 2.8 | 08/17 | | | | | | CR6 | 0.2 | 08/13 | ND | 08/17 | | | 12 | MUNICIPAL | ACTIVE | VOCS | ND | 06/02 | ND | 08/19 | | | | | | NITRATE (N) | 0.9 | 08/08 | 0.5 | 08/19 | | | | | | CLO4
AS | ND
4.0 | 06/02
08/05 | ND
2.9 | 08/19
08/17 | | | | | | CR6 | 4.0
0.5 | 08/05 | 2.9
ND | 08/17 | | | | | | | | | | | | | в & в КЕD-I-М | IX CONCRETE INC. | | | | | | | | | 03 | INDUSTRIAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | BANKS, GALE | & VICKI | | | | | | | | | NA | IRRIGATION | ACTIVE | VOCS | ND | 08/96 | ND | 11/19 | | | 101 | 11440/11014 | NOTIVE | NITRATE (N) | 4.7 | 10/98 | 4.1 | 11/19 | | | | | | CLO4 | ND | 09/97 | ND | 09/97 | | | BASELINE WA | TER COMPANY | | | | | | | | | 01 | IRRIGATION | DESTROYED | VOCS | ND | 02/98 | ND | 02/98 | | | 01 | 11440/11014 | DEGINOTED | NITRATE (N) | 22.5 | 02/98 | 22.5 | 02/98 | | | | | | CLO4 | 12.9 | 02/98 | 12.9 | 02/98 | | | 02 | IRRIGATION | DESTROYED | VOCS | ND | 11/98 | ND | 11/98 | | | 02 | INTOATION | DEGINOTED | NITRATE (N) | 16.8 | 11/98 | 16.8 | 11/98 | | | | | | CLO4 | 10.6 | 11/98 | 10.6 | 11/98 | | | 03 | IRRIGATION | DESTROYED | VOCS | NA | NA | NA | NA | | | 03 | INNOATION | DESTROTED | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | BEVERLY ACR | RES MUTUAL WATE | R USERS ASSOCIA | ATION | | | | | | | ROSE HILLS | MUNICIPAL | DESTROYED | TCE | 8.4 | 10/88 | 2.5 | 03/93 | | | NOSE TILLS | WONION AL | DESTROTED | PCE | 6.0 | 10/88 | 2.8 | 03/93 | | | | | | C-1,2-DCE | 8.0 | 08/86 | 2.4 | 03/93 | | | | | | NITRATE (N) | 5.1 | 08/86 | 3.3 | 09/90 | | | | | | CLO4
AS | NA
ND | NA
09/89 | NA
ND | NA
08/91 | | | DIDENDALIM | | | 7.0 | 5 | 00,00 | .,, | 00/01 | | | BIRENBAUM, I | | | | | | | | | | NA | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | POTEL I C WAS | TED COMPANY | | | | • | * | == = | | | | TER COMPANY | | | | | | | | | NA | MUNICIPAL | INACTIVE | VOCS
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | BURBANK DE | VELOPMENT COMP | ANY | | | | | | | | BURB | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | CALIFORNIA-A | AMERICAN WATER | COMPANY/DUARTI | E SYSTEM | | | | | | | | | | | ND | 00/05 | ND | 09/40 | V/U NEDADI E | | BV | MUNICIPAL | STANDBY | VOCS | ND | 02/85 | ND | 08/19 | VULNERABLE | | | | 1 | CONCENTRA | TION (NITRAT | E IN MG/L. (| OTHERS IN U | JG/L) | | |--------------|----------------|------------------|---------------------|--------------|----------------|-------------|----------------|---| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | AUTDATE (AI) | 0.0 | 40/40 | 0.0 | 00/40 | (4.0) | | | | | NITRATE (N)
CLO4 | 0.9
ND | 10/10
06/97 | 0.6
ND | 08/19
05/19 | (AS) | | | | | AS | 6.0 | 07/93 | ND | 08/19 | | | | | | CR6 | 1.0 | 12/00 | ND | 08/19 | | | | | | Orto | 1.0 | 12/00 | ND | 00/10 | | | B V 2 | MUNICIPAL | ACTIVE | VOCS | ND | 03/12 | ND | 02/20 | | | | | | NITRATE (N) | 0.9 | 12/14 | 0.6 | 08/19 | | | | | | CLO4 | ND | 09/12 | ND | 05/20 | | | | | | AS | 2.1 | 08/19 | 2.1 | 08/19 | | | | | | CR6 | 1.0 | 04/11 | ND | 08/19 | | | BACON | MUNICIPAL | ACTIVE | VOCS | ND | 09/15 | ND | 02/20 | VULNERABLE | | | | | NITRATE (N) | 2.3 | 10/81 | 1.4 | 08/19 | (AS) | | | | | CLO4 | ND | 06/97 | ND | 05/20 | , | | | | | AS | 6.0 | 09/93 | ND | 08/19 | | | | | | CR6 | 0.4 | 06/11 | ND | 08/19 | | | CR HV | MUNICIDAL | ACTIVE | vocs | ND | 06/88 | ND | 02/20 | | | CK IIV | MUNICIPAL | ACTIVE | NITRATE (N) | 2.5 | 03/19 | ND
1.5 | 02/20
08/19 | | | | | | CLO4 | ND | 06/97 | ND | 05/20 | | | | | | AS | 3.0 | 09/04 | ND | 08/19 | | | | | | CR6 | 1.0 | 12/00 | ND | 08/19 | | | | | | | | | | | | | ENCANTO | MUNICIPAL | ACTIVE | VOCS | ND | 12/92 | ND | 02/20 | | | | | | NITRATE (N) | 2.6 | 12/92 | 8.0 | 08/19 | | | | | | CLO4 | ND | 06/97 | ND | 05/20 | | | | | | AS
CR6 | 4.6
1.0 | 08/95
12/00 | 2.7
ND | 08/19
08/19 | | | | | | CINO | 1.0 | 12/00 | ND | 00/13 | | | FISH C | MUNICIPAL | INACTIVE | VOCS | ND | 02/85 | ND | 03/14 | | | | | | NITRATE (N) | 1.5 | 11/94 | 0.6 | 12/13 | | | | | | CLO4 | ND | 06/97 | ND | 09/14 | | | | | | AS | 13.0 | 09/80 | ND | 10/10 | | | | | | CR6 | 1.0 | 12/00 | 0.1 | 03/13 | | | 1.40.1 | MUNICIDAL | DECTROVER | 1/000 | ND | 00/05 | ND | 00/04 | | | LAS L | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | ND
2.7 | 02/85
08/80 | ND
0.9 | 06/91
09/91 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 18.0 | 06/78 | ND | 11/94 | | | | | | | | | | | | | LAS L2 | MUNICIPAL | ACTIVE | TCE | 1.6 | 08/96 | ND | 02/20 | | | | | | NITRATE (N) | 3.7 | 12/92 | 1.1 | 08/19 | | | | | | CLO4 | ND | 06/97 | ND | 05/20 | | | | | | AS
CR6 | 3.1
1.0 | 08/95
06/01 | 2.0
ND | 08/19
08/19 | | | | | | CINO | 1.0 | 00/01 | ND | 00/13 | | | LEMON | MUNICIPAL | ACTIVE |
VOCS | ND | 11/19 | ND | 02/20 | | | | | | NITRATE (N) | 4.6 | 11/19 | 3.5 | 05/20 | | | | | | CLO4 | ND | 08/19 | ND | 05/20 | | | NAT A)/F | MUNICIPAL | DEOTDOVED | TOF | 40.5 | 07/07 | ND | 00/00 | | | MT AVE | MUNICIPAL | DESTROYED | TCE
PCE | 16.5
1.0 | 07/87
08/82 | ND
ND | 09/93
09/93 | | | | | | 1,1,1-TCA | 8.4 | 04/85 | ND | 09/93 | | | | | | 1,1-DCE | 3.4 | 07/87 | ND | 09/93 | | | | | | T-1,2-DCE | 2.0 | 04/85 | ND | 09/93 | | | | | | NITRATE (N) | 14.7 | 05/89 | 2.3 | 09/93 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 05/89 | ND | 05/89 | | | STA FE | MUNICIPAL | ACTIVE | TCE | 3.3 | 04/84 | ND | 08/19 | VULNERABLE | | SIAFE | MUNICIPAL | ACTIVE | NITRATE (N) | 1.6 | 03/82 | 0.5 | 08/19 | (VOC,NO3(N)) | | | | | CLO4 | ND | 06/97 | ND | 05/19 | (************************************** | | | | | AS | 3.0 | 08/79 | ND | 08/19 | | | | | | CR6 | 1.0 | 12/00 | ND | 08/19 | | | | | | | | | | | | | WILEY | MUNICIPAL | ACTIVE | VOCS | ND | 09/01 | ND | 02/20 | | | | | | NITRATE (N) | 2.5 | 03/81 | 1.2 | 08/19 | | | | | | CLO4
AS | ND
2.0 | 06/97
09/09 | ND
ND | 05/20
08/19 | | | | | | CR6 | 1.0 | 12/00 | ND | 08/19 | | | 04115050114 | | | | | | | | | | CALIFURNIA-A | AWERICAN WATER | R COMPANY/SAN MA | KINU SYSIEM | | | | | | | BR 1 | MUNICIPAL | DESTROYED | CTC | 0.5 | 12/96 | 0.5 | 12/96 | | | | | | TCE | 27.0 | 07/93 | 27.0 | 12/96 | | | | | | PCE | 9.0 | 07/93 | 7.7 | 12/96 | | | | | | NITRATE (N) | 7.1 | 12/96 | 7.1 | 12/96 | | | | | | CLO4 | NA
1.0 | NA | NA | NA
10/81 | | | | | | AS | 1.0 | 03/81 | ND | 10/81 | | | | | | | | | | | | | | | 1 | CONCENTRA | TION (NITRAT | E IN MG/L. (| OTHERS IN U | JG/L) | | |-----------|-----------|-------------|--------------------------|--------------|----------------|-------------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | | | | | | | | BR 2 | MUNICIPAL | DESTROYED | TCE | 17.0 | 12/96 | 17.0 | 12/96 | | | | | | PCE | 6.4 | 12/96 | 6.4 | 12/96 | | | | | | NITRATE (N) | 5.7 | 07/93 | 5.7 | 12/96 | | | | | | CLO4 | NA | NA
02/04 | NA | NA
40/04 | | | | | | AS | ND | 03/81 | ND | 10/81 | | | DELMAR | MUNICIPAL | ACTIVE | VOCS | ND | 06/88 | ND | 02/20 | | | | | | NITRATE (N) | 4.5 | 06/14 | 3.9 | 02/20 | | | | | | CLO4
AS | ND
5.0 | 06/97
07/96 | ND
2.6 | 05/19
05/19 | | | | | | CR6 | 13.0 | 07/96 | 13.0 | 07/19 | | | | | | | | | | | | | GRAND | MUNICIPAL | ACTIVE | TCE | 4.8 | 03/07 | 3.9 | 05/20 | VULNERABLE | | | | | PCE
NITRATE (N) | 2.6
2.5 | 05/20
09/03 | 2.6
2.5 | 05/20
02/20 | (VOC) | | | | | CLO4 | ND | 08/97 | ND | 05/20 | | | | | | AS | 0.4 | 07/96 | ND | 09/16 | | | | | | CR6 | 10.4 | 11/16 | 8.5 | 05/20 | | | GUESS | MUNICIPAL | INACTIVE | TCE | 5.2 | 09/99 | 5.2 | 12/01 | | | GOLOG | WONION AL | INACTIVE | PCE | 5.4 | 12/01 | 5.4 | 12/01 | | | | | | NITRATE (N) | 4.5 | 05/01 | 4.3 | 09/01 | | | | | | CLO4 | ND | 08/97 | ND | 03/00 | | | | | | AS | 0.4 | 07/96 | ND | 02/01 | | | | | | CR6 | 7.8 | 10/00 | 4.8 | 06/01 | | | HALL | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | HALL 2 | MUNICIPAL | ACTIVE | VOCS | ND | 03/01 | ND | 02/20 | VULNERABLE | | | | | NITRATE (N) | 6.6 | 06/16 | 3.0 | 11/19 | (NO3(N)) | | | | | CLO4 | ND | 03/00 | ND | 05/19 | | | | | | AS
CR6 | ND
9.8 | 09/01
07/19 | ND | 05/19
05/20 | | | | | | CRO | 9.0 | 07/19 | 9.4 | 05/20 | | | HOWLAND | MUNICIPAL | ACTIVE | TCE | 6.9 | 07/89 | ND | 08/19 | VULNERABLE | | | | | PCE | 3.6 | 03/01 | ND | 08/19 | (VOC) | | | | | C-1,2-DCE
NITRATE (N) | 3.3
4.7 | 11/87
09/16 | ND
1.0 | 05/19
05/19 | | | | | | CLO4 | 4.7
ND | 08/97 | ND | 05/19 | | | | | | AS | 0.7 | 07/96 | ND | 05/19 | | | | | | CR6 | 6.7 | 11/16 | 6.5 | 05/19 | | | IVAR 1 | MUNICIPAL | DESTROYED | PCE | 7.4 | 06/99 | 6.2 | 06/00 | | | IVAN | WONICIFAL | DESTRUTED | TCE | 1.7 | 06/99 | ND | 06/00 | | | | | | NITRATE (N) | 6.6 | 09/94 | 5.9 | 09/01 | | | | | | CLO4 | ND | 08/97 | ND | 03/01 | | | | | | AS | 0.5 | 10/96 | 0.5 | 10/96 | | | IVAR 2 | MUNICIPAL | DESTROYED | vocs | NA | NA | NA | NA | | | | | | NITRATE (N) | 5.4 | 12/84 | 5.4 | 12/84 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 10/81 | ND | 10/81 | | | LONGDEN | MUNICIPAL | ACTIVE | PCE | 17.0 | 09/18 | 12.0 | 02/20 | VULNERABLE | | | | | TCE | 0.9 | 03/18 | 8.0 | 02/20 | (VOC,NO3(N),CLO4) | | | | | NITRATE (N) | 16.0 | 03/18 | 15.0 | 06/19 | | | | | | CLO4
AS | 5.5
4.6 | 06/16
06/01 | ND
ND | 02/20
06/19 | | | | | | CR6 | 4.3 | 05/15 | 4.0 | 06/19 | | | | | | | | | | | | | MAR 1 | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | ND | 01/85 | ND
• • | 01/85
01/84 | | | | | | CLO4 | 20.1
NA | 03/79
NA | 8.8
NA | 01/64
NA | | | | | | AS | 2.0 | 03/81 | ND | 10/81 | | | 1440.0 | MUNICIPAL | INIA OTE (T | V000 | A.1.A | | A.I.A. | | | | MAR 2 | MUNICIPAL | INACTIVE | VOCS
NITRATE (N) | NA
7.5 | NA
01/84 | NA
7.5 | NA
01/84 | | | | | | CLO4 | 7.5
NA | 01/84
NA | 7.5
NA | 01/84
NA | | | | | | AS | 1.0 | 03/81 | ND | 10/81 | | | 1445.0 | MILLIOIS | A OTU | V000 | ND | 04/0= | ND | 00/00 | | | MAR 3 | MUNICIPAL | ACTIVE | VOCS
NITRATE (N) | ND
3.9 | 01/85
09/17 | ND
2.0 | 02/20
02/20 | | | | | | CLO4 | ND | 06/97 | ND | 05/20 | | | | | | AS | 1.0 | 05/00 | ND | 05/19 | | | | | | CR6 | 9.6 | 09/17 | 8.9 | 05/20 | | | | | | | | | | | | | | | 1 | CONCENTRA | FIONI (NUTDAT | FE IN MOUL O | TUEDO IN | 110(1) | 1 | |--------------|---------------|-----------|----------------------------|---------------|----------------|------------|----------------|----------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | WELL NAME | USAGE | 314103 | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | KEMAKKO | | | | II. | II. | | • | | | <u></u> | | MIVW 1 | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | NA
7.0 | NA
03/01 | NA
7.0 | NA
03/01 | | | | | | CLO4 | NA | NA | NA | NA | | | MINAMA | MUNICIDAL | ACTIVE | VOCS | ND | 07/87 | ND | 02/20 | | | MIVW 2 | MUNICIPAL | ACTIVE | NITRATE (N) | לא
10.0 | 07/87 | ND
9.0 | 02/20 | | | | | | CLO4 | ND | 06/97 | ND | 05/20 | | | | | | AS | 0.6 | 07/96 | ND | 06/19 | | | | | | CR6 | 10.1 | 12/00 | 10.0 | 05/20 | | | RIC 1 | MUNICIPAL | DESTROYED | VOCS | ND | 02/85 | ND | 12/90 | | | | | | NITRATE (N) | 5.3 | 08/89 | 2.7 | 11/94 | | | | | | CLO4
AS | NA
ND | NA
09/80 | NA
ND | NA
11/94 | | | | | | 7.0 | ND | 00/00 | ND | 11/04 | | | RIC 2 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | RIC 3 | MUNICIPAL | ACTIVE | TCE | 1.4 | 03/19 | 1.1 | 02/20 | | | | | | PCE | 1.0 | 03/19 | 0.7 | 02/20 | | | | | | NITRATE (N)
CLO4 | 2.8
ND | 03/18
09/16 | 2.6
ND | 02/20
05/19 | | | | | | AS | ND | 09/16 | ND | 03/19 | | | | | | CR6 | 9.5 | 09/17 | 9.0 | 02/20 | | | ROANOKE | MUNICIPAL | INACTIVE | TOF | E 0 | 06/00 | 4.7 | 12/00 | | | RUANUKE | MUNICIPAL | INACTIVE | TCE
PCE | 5.0
1.2 | 04/90 | 4.7
ND | 12/00
09/00 | | | | | | C-1,2-DCE | 0.5 | 09/00 | ND | 12/00 | | | | | | NITRATE (N) | 7.5 | 05/89 | 6.6 | 12/00 | | | | | | CLO4 | 5.6 | 06/97 | ND | 03/00 | | | | | | AS
CR6 | 0.8
5.0 | 07/96
10/00 | ND
4.9 | 02/01
06/01 | | | | | | 0.10 | 0.0 | 10/00 | | 00/01 | | | ROSEMEAD | MUNICIPAL | INACTIVE | TCE | 6.1 | 03/12 | 3.8 | 05/14 | | | | | | PCE
NITRATE (N) | 3.4
8.6 | 03/09
12/13 | ND
6.6 | 05/14
05/14 | | | | | | CLO4 | ND | 08/97 | ND | 05/14 | | | | | | AS | 0.4 | 07/96 | ND | 05/14 | | | | | | CR6 | 11.0 | 10/00 | 5.2 | 06/11 | | | CALIFORNIA C | COUNTRY CLUB | | | | | | | | | | | | | | | | | | | ARTES | IRRIGATION | STANDBY | VOCS | ND
6.6 | 05/87 | ND
6.6 | 10/10 | | | | | | NITRATE (N)
CLO4 | 6.6
NA | 10/10
NA | 6.6
NA | 10/10
NA | | | | | | | | | | | | | CLUB | IRRIGATION | INACTIVE | PCE | 189.0 | 11/87 | 189.0 | 11/87 | | | | | | 1,1,2,2-PCA
NITRATE (N) | 24.0
NA | 11/87
NA | 24.0
NA | 11/87
NA | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | SYCAMORE | IRRIGATION | STANDBY | PCE
TCE | 7.1
0.7 | 09/02
09/01 | 0.6
ND | 10/10
10/10 | | | | | | NITRATE (N) | 28.9 | 10/07 | 4.3 | 10/10 | | | | | | CLO4 | ND | 02/98 | ND | 02/98 | | | CALIFORNIA D | OMESTIC WATER | COMPANY | | | | | | | | | | | | | | | | | | 01-E | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | 0204 | 10.0 | 10.0 | 10. | 10. | | | 02 | MUNICIPAL | DESTROYED | CTC | 0.7 | 09/96 | ND | 01/20 | VULNERABLE | | | | | PCE | 3.7 | 09/12 | 0.6 | 01/20 | (VOC,NO3(N),CLO4,AS) | | | | | TCE
NITRATE (N) | 4.0
6.1 | 10/99
02/15 | ND
3.9 | 01/20
01/20 | | | | | | CLO4 | 5.6 | 10/99 | ND | 05/17 | | | | | | AS | 7.4 | 12/11 | ND | 05/17 | | | | | | CR6 | 5.1 | 09/18 | 1.9 | 04/17 | | | 02A | MUNICIPAL | ACTIVE | VOCS | ND | 04/20 | ND | 04/20 | | | | | | NITRATE (N) | 2.2 | 04/20 | 2.2 | 04/20 | | | | | | AS
CR6 | 2.2
2.3 | 04/20
04/20 | 2.2
2.3 | 04/20
04/20 | | | | | | CNU | ۷.۵ | 04/20 | ۷.۵ | 04/20 | | | 03 | MUNICIPAL | ACTIVE | CTC | 5.3 | 02/01 | 1.2 | 04/20 | VULNERABLE | | | | | PCE | 32.0 | 11/12 | 26.0 | 04/20 | (VOC,NO3(N),CLO4) | | | | | TCE | 43.0 | 10/13 | 35.0 | 04/20 | | | | | 1 | CONCENTRA | FION /NITRAT | EINIMO/L O | TUEDO IN I | IC/L\ | 1 | |------------|----------------|--------------|---------------------------|--------------|----------------|------------|----------------|----------------------| | WELL NAME | USAGE | STATUS | | <u> </u> | RIC HIGH | | RECENT | REMARKS | | WELL NAME | USAGE | SIAIUS |
CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | REWARKS | | | | -11 | | | | | | 1 | | | | | 1,1-DCE | 6.4 | 01/14 | 4.3 | 04/20 | | | | | | C-1,2-DCE
NITRATE (N) | 4.2
10.8 | 04/13
01/07 | 2.6
4.2 | 04/20
04/20 | | | | | | CLO4 | 16.0 | 11/19 | 11.0 | 04/20 | | | | | | AS | 3.3 | 12/11 | 2.1 | 04/20 | | | | | | CR6 | 3.3 | 11/00 | 2.8 | 04/20 | | | 05 | MUNICIPAL | DESTROYED | PCE | 2.0 | 02/85 | ND | 12/90 | | | | | | NITRATE (N) | 2.9 | 03/84 | 2.9 | 03/84 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 40.0 | 06/78 | ND | 03/84 | | | 05A | MUNICIPAL | ACTIVE | CTC | 1.9 | 08/96 | ND | 04/20 | VULNERABLE | | | | | PCE | 20.0 | 11/15 | 9.3 | 04/20 | (VOC,NO3(N),AS) | | | | | TCE | 19.0 | 11/15 | 9.1 | 04/20 | | | | | | 1,1-DCE
C-1,2-DCE | 2.7
1.6 | 10/08
10/08 | 1.5
0.7 | 04/20
04/20 | | | | | | NITRATE (N) | 6.6 | 04/01 | 2.1 | 04/20 | | | | | | CLO4 | ND | 06/97 | ND | 05/17 | | | | | | AS | 7.6 | 07/17 | 2.1 | 04/20 | | | | | | CR6 | 2.0 | 04/17 | 1.9 | 04/20 | | | 06 | MUNICIPAL | ACTIVE | СТС | 3.5 | 12/06 | ND | 04/20 | VULNERABLE | | | | | PCE | 39.0 | 10/14 | 10.0 | 04/20 | (VOC,NO3(N),CLO4) | | | | | TCE | 44.0 | 10/14 | 11.0 | 04/20 | | | | | | 1,1-DCE | 6.2 | 10/14 | 1.5 | 04/20 | | | | | | C-1,2-DCE | 4.5 | 10/14 | 0.9 | 04/20 | | | | | | NITRATE (N) | 7.7 | 04/11 | 5.5 | 04/20 | | | | | | CLO4 | 7.8 | 04/17 | 5.3 | 05/17 | | | | | | AS | 3.2 | 04/04 | ND | 04/20 | | | | | | CR6 | 2.2 | 04/17 | 2.1 | 04/20 | | | 08 | MUNICIPAL | ACTIVE | PCE | 9.8 | 02/09 | 2.0 | 04/20 | VULNERABLE | | | | | TCE | 12.0 | 02/09 | ND | 04/20 | (VOC,NO3(N),CLO4,AS) | | | | | CTC | 1.1 | 09/93 | ND | 04/20 | | | | | | NITRATE (N) | 5.4 | 08/02 | 2.6 | 04/20 | | | | | | CLO4 | 5.6 | 08/02 | ND | 05/17 | | | | | | AS | 6.0 | 09/94 | 2.0 | 04/20 | | | | | | CR6 | 3.2 | 11/00 | 2.4 | 04/20 | | | 10 | MUNICIPAL | ACTIVE | PCE | 58.0 | 01/19 | 37.0 | 04/20 | VULNERABLE | | | | | TCE | 57.0 | 01/19 | 38.0 | 04/20 | (VOC,NO3(N),CLO4) | | | | | CTC | 1.4 | 09/19 | ND | 04/20 | | | | | | 1,1-DCE | 9.4 | 10/16 | 5.5 | 04/20 | | | | | | C-1,2-DCE | 6.5 | 10/16 | 3.3 | 04/20 | | | | | | NITRATE (N) | 6.9 | 09/16 | 5.0 | 04/20 | | | | | | CLO4 | 10.0 | 08/19 | 4.9 | 04/20 | | | | | | AS
CR6 | 2.7
2.7 | 12/19
10/16 | 2.7
ND | 12/19
01/18 | | | 13-N | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | 13-14 | WONION AL | DESTROTED | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 14 | MUNICIPAL | INACTIVE | СТС | 4.4 | 10/07 | ND | 04/20 | VULNERABLE | | | | | PCE | 16.0 | 11/12 | 5.2 | 04/20 | (VOC,NO3(N),CLO4) | | | | | TCE | 20.0 | 11/12 | 5.6 | 04/20 | | | | | | 1,2-DCA | 1.0 | 06/08 | ND | 04/20 | | | | | | C-1,2-DCE | 1.6 | 10/12 | ND | 04/20 | | | | | | 1,1-DCE | 1.9 | 10/12 | 0.7 | 04/20 | | | | | | NITRATE (N) | 16.9 | 12/14 | 12.0 | 04/20 | | | | | | CLO4 | 16.0 | 12/12 | ND | 05/17 | | | | | | AS
CR6 | 4.5
5.1 | 04/01
04/17 | 2.0
3.7 | 01/20
01/20 | | | | | | 51.0 | J. 1 | · ./ 1./ | J., | 0.,20 | | | CEDAR AVEN | JE MUTUAL WATE | K COMPANY | | | | | | | | 01 SOUTH | MUNICIPAL | DESTROYED | PCE | 2.2 | 09/90 | ND | 06/94 | | | | | | NITRATE (N) | 6.1 | 08/93 | 2.0 | 06/94 | | | | | | CLO4
AS | NA
NA | NA
09/89 | NA
ND | NA
08/93 | | | | | | | | | | | | | 02 NORTH | MUNICIPAL | DESTROYED | PCE | 0.8 | 04/92 | ND | 06/94 | | | | | | NITRATE (N) | 4.5 | 01/86 | 1.7 | 08/93 | | | | | | CLO4
AS | NA | NA
00/80 | NA | NA
09/92 | | | | | | AO | ND | 09/89 | ND | 09/92 | | CEMEX CONSTRUCTION MATERIALS L.P. (AZ TWO) | | 1 | - 1 | CONCENTE | TION (NUTDATE | EINIMO" 1 | THERS II. | 10/13 | 1 | |--------------|-----------------|------------------|---------------------------|----------------|----------------|--------------|----------------|---------| | WELL NAME | USAGE | STATUS | CONCENTRAT | | E IN MG/L, C | | RECENT | REMARKS | | WELL NAME | OUAGE | OTATOO | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | KEMAKKO | | | INDUIGED IN | DE07D0\/ED | 505 | 7000 | 0.1/0.5 | | | -1- | | 02 | INDUSTRIAL | DESTROYED | PCE
TCE | 700.0
940.0 | 01/85
04/85 | 2.8
6.3 | 09/03
09/03 | | | | | | CTC | 2.2 | 04/65 | ND | 09/03 | | | | | | 1,1-DCE | 350.0 | 01/87 | 7.2 | 09/03 | | | | | | 1,1-DCA | 1.0 | 08/01 | ND | 09/03 | | | | | | 1,1,1-TCA | 430.0 | 01/87 | 3.6 | 09/03 | | | | | | VC | 19.0 | 12/87 | ND | 09/03 | | | | | | NITRATE (N)
CLO4 | 17.8
4.2 | 09/02
06/97 | 16.5
ND | 09/03
09/98 | | | CHAMPION MI | JTUAL WATER CO | MPANY | | | | | | | | 01 | | | PCE | 3.0 | 09/86 | ND | 06/98 | | | UI | MUNICIPAL | DESTROYED | NITRATE (N) | NA | 09/66
NA | NA | 06/96
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 02 | MUNICIPAL | DESTROYED | PCE | 0.6 | 06/88 | ND | 09/13 | | | | | | NITRATE (N) | 6.3 | 09/10 | 5.0 | 06/14 | | | | | | CLO4 | ND | 09/97 | ND | 09/13 | | | | | | AS
CR6 | 3.6
1.0 | 08/98
06/01 | 2.4
0.7 | 09/13
09/13 | | | 02 | MUNICIDAL | DESTROYER | | | | | | | | 03 | MUNICIPAL | DESTROYED | PCE
FREON 113 | 1.3
18.0 | 09/96
03/07 | ND
ND | 12/14
03/15 | | | | | | NITRATE (N) | 5.4 | 03/07 | 4.1 | 03/15 | | | | | | CLO4 | ND | 03/98 | ND | 12/14 | | | | | | AS | 13.2 | 05/98 | 2.8 | 03/15 | | | | | | CR6 | 1.0 | 06/01 | ND | 09/14 | | | CHEVRON USA | A INC. | | | | | | | | | TEMP 1 | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | CITDUS VALLE | EV MEDICAL CENT | ER, QUEEN OF THE | | | | | | | | | | | | | | | | | | 01 | NON-POTABLE | INACTIVE | VOCS | ND | 09/96 | ND | 10/10 | | | | | | NITRATE (N)
CLO4 | 23.7
24.0 | 02/98
02/98 | 18.7
24.0 | 10/10
02/98 | | | CLAYTON MAR | NUFACTURING CO | MPANY | | | | | | | | 02 | | DESTROYED | TCE | 150.0 | 08/01 | 47.0 | 00/00 | | | 02 | INDUSTRIAL | DESTRUTED | PCE | 30.0 | 08/01 | 47.0
ND | 09/03
09/03 | | | | | | 1,1-DCE | 10.0 | 08/01 | 1.7 | 09/03 | | | | | | C-1,2-DCE | 1.7 | 08/01 | ND | 09/03 | | | | | | 1,1-DCA | 15.0 | 08/01 | ND | 09/03 | | | | | | 1,2-DCA | 13.0 | 08/01 | ND | 09/03 | | | | | | 1,1,1-TCA | 1.1 | 08/01 | ND | 09/03 | | | | | | NITRATE (N) | 19.7 | 08/01 | 9.0 | 09/03 | | | | | | CLO4 | 4.0 | 09/97 | 4.0 | 09/97 | | | CORCORAN B | ROTHERS | | | | | | | | | 01 | NON-POTABLE | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | COUNTY SAME | TATION DISTRICT | NO. 18 | | | | | | | | | | | V006 | NIA | NIA | NΙΛ | NIA | | | E08A | REMEDIAL | DESTROYED | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA
NA | NA | | | E09A | REMEDIAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | E10A | REMEDIAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | E11A | REMEDIAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | | | | | | | EX1 | REMEDIAL | ACTIVE | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | (**/ | 4 | | | | | | | | | CONCENTRAT | TION (NITRAT | E IN MG/L. O | OTHERS IN | UG/L) | | |--------------|---------------|-------------|------------------------|--------------|----------------|------------|----------------|---------------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | IC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | CLO4 | NA | NA | NA | NA | | | EX2 | REMEDIAL | ACTIVE | VOCS | NA | NA | NA | NA | | | LXZ | KLWLDIAL | ACTIVE | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | EX3 | REMEDIAL | ACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | EV.4 | DEMEDIAL | A OT!\ /E | | | | | | | | EX4 | REMEDIAL | ACTIVE | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | LE1 | REMEDIAL | DESTROYED | TCE | 4.2 | 06/86 | 3.7 | 09/86 | | | | | | PCE
NITRATE (N) | 0.8
NA | 09/86
NA | 0.8
NA | 09/86
NA | | | | | | CLO4 | NA | NA | NA | NA | | | LE2 | REMEDIAL | DESTROYED | TCE | 0.1 | 06/86 | ND | 09/86 | | | | | | PCE | NA | 06/86 | ND | 09/86 | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | . 50 | 5545544 | DE07700//FD | | | | | | | | LE3 | REMEDIAL | DESTROYED | TCE
PCE | 1.5
1.6 | 06/86
06/86 | 1.2
0.8 | 09/86
09/86 | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | LE4 | REMEDIAL | DESTROYED | TCE | 5.1 | 09/86 | 5.1 | 09/86 | | | | | | PCE
NITRATE (N) | 2.0
NA | 09/86
NA | 2.0
NA | 09/86
NA | | | | | | CLO4 | NA | NA | NA | NA | | | COVINA, CITY | OF | | | | | | | | | 01 | MUNICIPAL | INACTIVE | PCE | 0.6 | 01/99 | 0.6 | 01/99 | | | | | | NITRATE (N) | 27.1 | 01/99 | 27.1 | 01/99 | | | | | | CLO4 | NA | NA | NA | NA | | | 02 (GRAND) | MUNICIPAL | INACTIVE | VOCS
NITRATE (N) | ND
26.2 | 06/88
08/89 | ND
23.3 | 09/98
04/99 | | | | | | CLO4 | 23.0 | 09/97 | 22.0 | 09/98 | | | | | | AS | 3.3 | 08/97 | 3.3 | 08/97 | | | 03 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | 16.3
NA | 10/73
NA | 16.3
NA | 10/73
NA | | | COVINA IDDIC | ATING COMPANY | | | | | | | | | | | | | | | | | | | BAL 1 | MUNICIPAL | ACTIVE | TCE
PCE | 200.0
7.6 | 07/80
07/80 | ND
ND | 07/19
07/19 | VULNERABLE
(VOC,NO3(N)) | | | | | 1,1-DCE | 0.5 | 10/06 | ND | 07/19 | (, (// | | | | | NITRATE (N)
CLO4 | 8.0
1.5 | 12/89
10/06 | 2.2
ND | 10/19
10/19 | | | | | | AS | 4.7 | 12/89 | 3.1 | 08/18 | | | | | | CR6 | 1.0 | 10/00 | 0.2 | 07/13 | | | BAL 2 | MUNICIPAL | ACTIVE | TCE
PCE | 195.0
7.9 | 06/80
06/80 |
ND
ND | 07/19
07/19 | VULNERABLE
(VOC,NO3(N),CLO4) | | | | | 1,1-DCE | 0.8 | 07/07 | ND | 10/19 | (100,1100(11),0204) | | | | | NITRATE (N)
CLO4 | 10.6
5.5 | 03/10
03/09 | 3.5
ND | 10/19
10/19 | | | | | | AS | 4.0 | 08/76 | 3.0 | 08/18 | | | | | | CR6 | 3.5 | 10/19 | 3.5 | 10/19 | | | BAL 3 | MUNICIPAL | ACTIVE | TCE | 225.0 | 01/80 | ND | 07/19 | VULNERABLE (1/00 NOO(A)) | | | | | PCE
CTC | 10.0
3.0 | 02/85
04/85 | ND
ND | 07/19
07/19 | (VOC,NO3(N),CLO4) | | | | | 1,1-DCA | 4.0 | 04/85 | ND | 07/19 | | | | | | 1,2-DCA
1,1-DCE | 3.7
2.1 | 02/85
04/85 | ND
ND | 07/19
07/19 | | | | | | T-1,2-DCE
1,1,1-TCA | 2.9
5.2 | 02/85
04/85 | ND
ND | 07/19
07/19 | | | | | | NITRATE (N) | 12.9 | 08/89 | 2.2 | 10/19 | | | | | | CLO4
AS | 5.6
3.5 | 09/08
08/18 | ND
3.5 | 10/19
08/18 | | | | | | CR6 | 3.5 | 08/18 | 3.5 | 08/18 | | | | | | | | | | | | | | | | CONCENTRA | | | | | | |---------------|----------------|------------|---------------------------|-------------|----------------|-------------|----------------|--------------| | WELL NAME | USAGE | STATUS | CONTAMINANT
OF CONCERN | | IC HIGH | _ | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | CONTR | MUNICIPAL | DESTROYED | PCE | 1.4 | 12/92 | 1.3 | 03/94 | | | 0011111 | | 5201110125 | NITRATE (N) | 28.3 | 12/89 | 24.4 | 03/94 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 12/89 | ND | 12/92 | | | VALEN | MUNICIPAL | DESTROYED | PCE | 2.4 | 08/85 | 0.6 | 09/97 | | | | | | NITRATE (N)
CLO4 | 16.5
6.4 | 06/81
09/97 | 15.7
6.4 | 09/97
09/97 | | | | | | 0204 | 0.4 | 00/01 | 0.4 | 00/01 | | | CREVOLIN, A.J |). | | | | | | | | | NA | DOMESTIC | DESTROYED | VOCS
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | CDOWN CITY D | PLATING COMPAN | ıv | | | | | | | | | | | | | | | | | | 01 | INDUSTRIAL | INACTIVE | TCE
T-1,2-DCE | 1.2
1.4 | 09/04
05/87 | 1.2
ND | 09/04
09/04 | | | | | | NITRATE (N) | 1.7 | 09/04 | 0.8 | 09/08 | | | | | | CLO4 | ND | 09/97 | ND | 10/07 | | | DAVIDSON OP | TRONICS INC. | | | | | | | | | NA | INDUSTRIAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | DAWES MARY | , v | | | | | | | | | DAWES, MARY | N. | | | | | | | | | 04 | IRRIGATION | INACTIVE | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | DEL RIO MUTU | AL WATER COMP | ANY | | | | | | | | BURKETT | MUNICIPAL | ACTIVE | TCE | 2.2 | 06/90 | ND | 09/19 | VULNERABLE | | DOMETT | MONION / LE | 7,01172 | PCE | 3.7 | 03/97 | ND | 09/19 | (VOC,NO3(N)) | | | | | NITRATE (N)
CLO4 | 7.0
ND | 12/03
09/97 | 0.8
ND | 09/19
09/18 | | | | | | AS | 2.6 | 03/02 | 2.1 | 09/17 | | | | | | CR6 | 3.4 | 07/01 | ND | 09/17 | | | KLING | MUNICIPAL | INACTIVE | PCE
NITRATE (N) | 1.3
NA | 08/86
NA | ND
NA | 02/89
NA | | | | | | CLO4 | NA | NA | NA | NA | | | DRIFTWOOD D | AIRY | | | | | | | | | 01 | INDUSTRIAL | INACTIVE | PCE | 13.9 | 06/09 | 13.9 | 06/98 | | | ΟI | INDUSTRIAL | INACTIVE | 1,1,1-TCA | 0.3 | 06/98
03/93 | ND | 06/98 | | | | | | NITRATE (N)
CLO4 | 14.7
ND | 03/93
06/98 | 10.6
ND | 06/98
06/98 | | | | | | GLO4 | ND | 00/90 | ND | 00/90 | | | DUNNING, GEO | ORGE | | | | | | | | | 1910 | IRRIGATION | INACTIVE | VOCS | NA | NA | NA | NA | | | 1010 | 11110/111011 | 110101112 | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | EAST PASADE | NA WATER COMP | ANY, LTD. | | | | | | | | 09 | MUNICIPAL | ACTIVE | VOCS | ND | 06/88 | ND | 07/19 | | | | | | NITRATE (N)
CLO4 | 1.4
ND | 09/12
07/97 | 1.0
ND | 03/17
03/17 | | | | | | AS | 0.9 | 08/96 | ND | 04/15 | | | | | | CR6 | 9.4 | 07/01 | 8.4 | 10/14 | | | 11 | MUNICIPAL | ACTIVE | VOCS
NITRATE (N) | ND
0.8 | 12/11
09/16 | ND
0.7 | 04/20
03/17 | | | | | | CLO4 | ND | 12/11 | ND | 03/17 | | | | | | AS
CR6 | ND
5.9 | 05/14
10/14 | ND
5.9 | 04/15
10/14 | | | | | | UNU | ບ.ສ | 10/14 | ວ.ສ | 10/14 | | | EL MONTE, CIT | TY OF | | | | | | | | | 02A | MUNICIPAL | ACTIVE | PCE | 13.0 | 03/98 | 4.6 | 05/20 | VULNERABLE | | | | | | | | | | | | | | 1 | CONCENTRA | FION /NITDAT | E IN MC/L (| THERE IN I | IC/I \ | 1 | |---------------|------------|------------|---------------------------|--------------|----------------|------------|----------------|----------------------------| | WELL NAME | USAGE | STATUS | | | RIC HIGH | | RECENT | REMARKS | | WELL NAME | USAGE | SIAIUS | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | KEWAKKO | | | | | 1 | <u>'</u> | | <u> </u> | | | | | | | TCE | 5.3 | 01/95 | 0.7 | 05/20 | (VOC,NO3(N),AS) | | | | | NITRATE (N)
CLO4 | 8.5
ND | 06/16
07/97 | 3.3
ND | 05/20
07/18 | | | | | | AS | 10.0 | 03/73 | ND | 08/17 | | | | | | CR6 | 2.6 | 08/17 | 2.6 | 08/17 | | | | | | | | | | | | | 03 | MUNICIPAL | STANDBY | PCE
1,1,1-TCA | 23.6 | 12/00
11/93 | 1.0 | 05/20
10/19 | VULNERABLE | | | | | NITRATE (N) | 1.0
16.2 | 08/89 | ND
5.4 | 05/20 | (VOC,NO3(N),AS) | | | | | CLO4 | ND | 07/97 | ND | 10/19 | | | | | | AS | 10.0 | 03/73 | ND | 12/17 | | | | | | CR6 | 3.2 | 12/17 | 3.2 | 12/17 | | | 04 | MUNICIPAL | STANDBY | PCE | 60.0 | 12/19 | 60.0 | 12/19 | VULNERABLE | | 04 | MONION AL | STANDDT | TCE | 7.8 | 02/80 | ND | 12/19 | (VOC,NO3(N),AS) | | | | | NITRATE (N) | 13.1 | 11/14 | 5.8 | 12/19 | (1 - 1,1 - 1 (1 - 1),1 - 1 | | | | | CLO4 | ND | 07/97 | ND | 12/19 | | | | | | AS | 10.0 | 03/73 | ND | 12/19 | | | | | | CR6 | 2.8 | 07/01 | 1.1 | 12/19 | | | 05 | MUNICIPAL | DESTROYED | TCE | 150.0 | 07/93 | 70.0 | 12/96 | | | | | | PCE | 51.0 | 07/93 | 32.0 | 12/96 | | | | | | CTC | 4.3 | 07/93 | 1.4 | 12/96 | | | | | | NITRATE (N) | 12.2 | 12/96 | 5.9 | 06/99 | | | | | | CLO4 | 5.9 | 06/97 | 5.9 | 06/97 | | | | | | AS | 10.0 | 04/73 | 10.0 | 04/73 | | | 10 | MUNICIPAL | ACTIVE | TCE | 7.2 | 09/81 | ND | 05/20 | VULNERABLE | | | | | PCE | 17.7 | 12/93 | 1.4 | 05/20 | (VOC,NO3(N),AS) | | | | | NITRATE (N) | 9.3 | 04/16 | 6.8 | 05/20 | | | | | | CLO4 | ND | 06/97 | ND | 07/19 | | | | | | AS
CR6 | 20.0
1.8 | 03/73
05/20 | ND
1.8 | 05/20
05/20 | | | | | | CNO | 1.0 | 03/20 | 1.0 | 03/20 | | | 11 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | 4.9 | 07/79 | 4.9 | 07/79 | | | | | | CLO4 | NA
20.0 | NA
00/70 | NA | NA
00/70 | | | | | | AS | 20.0 | 03/73 | 3.0 | 08/79 | | | 12 | MUNICIPAL | ACTIVE | TCE | 87.0 | 04/19 | 67.0 | 05/20 | VULNERABLE | | | | | PCE | 39.0 | 04/19 | 39.0 | 05/20 | (VOC,NO3(N)) | | | | | CTC | 1.0 | 06/92 | 0.6 | 05/20 | | | | | | C-1,2-DCE
NITRATE (N) | 0.9 | 10/16
06/05 | ND | 05/20
05/20 | | | | | | CLO4 | 9.3
ND | 06/97 | 8.5
ND | 05/20 | | | | | | AS | ND | 05/84 | ND | 07/19 | | | | | | CR6 | 5.5 | 07/19 | 4.7 | 05/20 | | | 40 | MUNICIDAL | A OTIVE | DOE | 7.5 | 0.4/4.0 | 0.0 | 05/00 | VIII NIEDADI E | | 13 | MUNICIPAL | ACTIVE | PCE
TCE | 7.5
15.0 | 04/16
04/16 | 2.2
1.9 | 05/20
05/20 | VULNERABLE | | | | | NITRATE (N) | 5.3 | 06/16 | 4.6 | 07/19 | (VOC,NO3(N)) | | | | | CLO4 | ND | 07/97 | ND | 07/19 | | | | | | AS | 1.3 | 08/96 | ND | 07/19 | | | | | | CR6 | 5.3 | 07/16 | 3.6 | 07/19 | | | 14 | MUNICIPAL | ACTIVE | PCE | 4.4 | 05/20 | 4.4 | 05/20 | VULNERABLE | | (DEW-1) | | | TCE | 12.0 | 05/19 | 12.0 | 05/20 | (VOC) | | | | | C-1,2-DCE | 1.1 | 12/19 | 0.8 | 05/20 | | | | | | NITRATE (N) | 3.0 | 05/19 | 2.6 | 05/20 | | | | | | CLO4 | ND | 05/19 | ND | 05/20 | | | | | | AS
CR6 | ND
4.7 | 05/19
05/19 | ND
4.7 | 05/19
05/20 | | | | | | CINO | 4.7 | 03/13 | 4.7 | 03/20 | | | 15 | MUNICIPAL | ACTIVE | PCE | 6.6 | 05/20 | 6.6 | 05/20 | VULNERABLE | | (DEW-2) | | | TCE | 7.9 | 05/19 | 7.4 | 05/20 | (VOC,NO3(N),CLO4) | | | | | NITRATE (N) | 5.3 | 07/19 | 4.1 | 05/20 | | | | | | CLO4
AS | 8.9
ND | 12/19
05/19 | ND
ND | 05/20
05/19 | | | | | | CR6 | 3.8 | 05/20 | 3.8 | 05/19 | | | | | , | | | | | | , | | 16
(DEW 3) | MUNICIPAL | ACTIVE | PCE | 15.0 | 05/20 | 15.0 | 05/20 | VULNERABLE | | (DEW-3) | | | TCE
CTC | 32.0
0.6 | 05/20
05/19 | 32.0
ND | 05/20
05/20 | (VOC,NO3(N)) | | | | | NITRATE (N) | 6.1 | 05/19 | 4.7 | 05/20 | | | | | | CLO4 | ND | 05/19 | ND | 05/20 | | | | | | AS | ND | 05/19 | ND | 05/19 | | | | | | CR6 | 5.0 | 05/19 | 2.9 | 05/20 | | | MT VW | IRRIGATION | DESTROYED | PCE | 2.1 | 08/85 | ND | 01/01 | | | | | 2231110120 | . 02 | 1 | 30,00 | 110 | 5 17 0 1 | | | | | 1 | CONCENTRA | TION (NITPAT | FINMO// | OTHERS IN I | IG/L) | 1 | |--------------|----------------|-----------|--------------------------|----------------|----------------|-------------|----------------|------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | TCE | 2.0 | 01/85 | ND | 01/01 | | | | | | NITRATE (N) | 6.8 | 02/87 | 2.3 | 01/01 | | | | | | CLO4 | ND | 09/97 | ND | 11/97 | | | | | | AS | ND | 02/84 | ND | 02/84 | | | EL MONTE CE | METERY ASSOCIA | ATION | | | | | | | | NA | IRRIGATION | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | FRUIT STREET | T WATER COMPAN | NY | | | | | | | | NA | IRRIGATION | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | GATES, JAME | S RICHARD | | | | | | | | | | | A 0711/F | | | | | | | | GATES 1 | IRRIGATION | ACTIVE | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | 01 | NA | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | GLENDORA, C | CITY OF | | | | | | | | | 01-E | MUNICIPAL | DESTROYED | TCE | 0.8 | 12/80 | ND | 09/07 | |
 | | | NITRATE (N)
CLO4 | 8.6
ND | 10/88
06/97 | 7.9
ND | 08/08
03/03 | | | | | | AS | 2.8 | 07/98 | ND | 03/03 | | | | | | CR6 | 1.0 | 05/01 | 1.0 | 05/01 | | | 02-E | MUNICIPAL | ACTIVE | VOCS | ND | 03/85 | ND | 03/20 | VULNERABLE | | | | | NITRATE (N) | 15.8 | 05/78 | 1.3 | 09/19 | (NO3(N)) | | | | | CLO4
AS | ND
0.7 | 07/97
08/96 | ND
ND | 03/20
09/16 | | | | | | CR6 | 1.3 | 09/16 | ND | 09/19 | | | 03-G | MUNICIPAL | INACTIVE | TCE | 0.5 | 12/79 | ND | 05/97 | | | | | | PCE | 0.5 | 05/97 | 0.5 | 05/97 | | | | | | NITRATE (N)
CLO4 | 36.7
NA | 08/83
NA | 25.1
NA | 08/99
NA | | | 04-E | MUNICIPAL | INACTIVE | TCE | 0.7 | 08/80 | ND | 08/91 | | | 0 T L | MONION / LE | WWW | PCE | 0.1 | 07/81 | ND | 08/91 | | | | | | NITRATE (N) | 28.5 | 06/83 | 12.8 | 08/91 | | | | | | CLO4
AS | NA
ND | NA
07/74 | NA
ND | NA
07/74 | | | | | | AS | ND | 07/74 | ND | 07/74 | | | 05-E | MUNICIPAL | ACTIVE | VOCS | ND
0.7 | 02/95 | ND | 09/19 | | | | | | NITRATE (N)
CLO4 | 0.7
ND | 05/95
07/97 | 0.4
ND | 06/19
09/19 | | | | | | AS | 5.3 | 04/98 | 2.8 | 06/19 | | | | | | CR6 | 1.0 | 11/00 | ND | 06/19 | | | 07-G | MUNICIPAL | INACTIVE | TCE | 302.0 | 01/81 | ND | 04/98 | | | | | | PCE | 25.0 | 01/81 | 1.9 | 04/98 | | | | | | 1,1-DCE
C-1,2-DCE | 435.0
21.0 | 05/84
05/82 | ND
ND | 04/98
04/98 | | | | | | 1,1-DCA | 5.0 | 05/84 | ND | 04/98 | | | | | | 1,2-DCA | 12.1 | 12/93 | ND | 04/98 | | | | | | 1,1,1-TCA
NITRATE (N) | 3200.0
23.9 | 05/84
04/98 | 64
17.1 | 04/98
04/98 | | | | | | CLO4 | 5.3 | 04/98 | 5.3 | 04/98 | | | | | | AS | ND | 07/74 | ND | 08/95 | | | 08-E | MUNICIPAL | ACTIVE | VOCS | ND | 08/02 | ND | 03/20 | | | | | | NITRATE (N) | 1.5 | 08/86 | ND | 09/19 | | | | | | CLO4 | ND | 07/97 | ND | 09/19 | | | | | | AS
CR6 | 3.2
1.0 | 08/96
11/00 | 2.4
ND | 09/17
09/17 | | | 09-E | MUNICIPAL | ACTIVE | VOCS | ND | | ND | 09/19 | | | U9-E | WUNICIPAL | ACTIVE | NITRATE (N) | 0.9 | 05/89
08/96 | ND
ND | 09/19 | | | | | | CLO4 | ND | 07/97 | ND | 09/19 | | | | | | | | | | | | | | | | CONCENTRA | TION (NITRAT | EIN MO/L 4 | THERS IN I | IG/L) | | |--------------|---------------|-------------------|---------------------|--------------|----------------|------------|----------------|-----------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | | , | RECENT | REMARKS | | WEEE IVAILE | OUAGE | GIATOS | OF CONCERN | VALUE | DATE | VALUE | DATE | KEMAKKO | | | | | AS | 2.6 | 09/17 | 2.6 | 09/17 | | | | | | CR6 | 1.0 | 11/00 | ND | 09/17 | | | 40.5 | AALINIIOIDAI | A OT!\ /E | 1/000 | ND | 07/07 | ND | 00/00 | VIII NEDADI E | | 10-E | MUNICIPAL | ACTIVE | VOCS
NITRATE (N) | ND
17.6 | 07/97
05/77 | ND
4.9 | 03/20
03/20 | VULNERABLE
(NO3(N),AS) | | | | | CLO4 | ND | 07/97 | ND | 03/20 | () | | | | | AS | 7.0 | 08/79 | ND | 03/20 | | | | | | CR6 | 1.2 | 03/17 | ND | 03/20 | | | 11-E | MUNICIPAL | ACTIVE | VOCS | ND | 05/82 | ND | 09/19 | VULNERABLE | | | | | NITRATE (N) | 26.5 | 08/73 | 8.2 | 03/20 | (NO3(N),CLO4) | | | | | CLO4 | 4.9 | 12/10 | ND | 03/20 | | | | | | AS
CR6 | 3.2
1.8 | 07/98
09/16 | ND
1.4 | 09/16
09/19 | | | | | | CNO | 1.0 | 09/10 | 1.4 | 09/19 | | | 12-E | MUNICIPAL | ACTIVE | TCE | 0.9 | 12/80 | ND | 09/19 | | | | | | NITRATE (N) | 1.1 | 07/98 | ND | 09/19 | | | | | | CLO4
AS | ND
4.4 | 06/97
07/97 | ND
2.2 | 09/19
09/18 | | | | | | CR6 | 1.0 | 11/00 | ND | 09/15 | | | | | | | | | | | | | 13-E | MUNICIPAL | ACTIVE | VOCS | ND
6.6 | 06/04 | ND
1.5 | 03/20 | VULNERABLE (NO2(N)) | | | | | NITRATE (N)
CLO4 | 6.6
ND | 12/09
06/04 | 1.5
ND | 03/20
09/19 | (NO3(N)) | | | | | AS | 2.2 | 09/15 | ND | 06/19 | | | | | | CR6 | 0.6 | 09/13 | ND | 06/19 | | | GOEDERT, LIL | LIAN | | | | | | | | | | | 5507501/55 | | | 00/00 | | 00/00 | | | GOEDERT | IRRIGATION | DESTROYED | VOCS
NITRATE (N) | ND
1.6 | 06/98
06/98 | ND
1.6 | 06/98
06/98 | | | | | | CLO4 | ND | 06/98 | ND | 06/98 | | | COLDEN STAT | E MATER COMPA | NIVIOAN DIMAC DIC | TRICT | | | | | | | GOLDEN STAT | E WATER COMPA | NY/SAN DIMAS DIS | IRICI | | | | | | | ART-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | 13.6 | 10/74 | 13.6 | 10/74 | | | | | | CLO4
AS | NA
ND | NA
07/74 | NA
ND | NA
07/74 | | | | | | 7.0 | ND | 01714 | ND | 01714 | | | ART-2 | MUNICIPAL | DESTROYED | VOCS | ND | 06/89 | ND | 05/07 | | | | | | NITRATE (N)
CLO4 | 5.9
ND | 08/07
08/97 | 2.1
ND | 09/07
09/07 | | | | | | AS | 0.8 | 08/96 | ND | 05/07 | | | ADT 0 | MUNICIDAL | A CTIVE | V000 | ND | 05/00 | ND | 44/40 | VIII NEDADI E | | ART-3 | MUNICIPAL | ACTIVE | VOCS
NITRATE (N) | ND
31.6 | 05/89
05/14 | ND
8.4 | 11/19
05/20 | VULNERABLE
(NO3(N),CLO4) | | | | | CLO4 | 21.0 | 05/14 | 4.3 | 05/20 | (1100(11),0201) | | | | | AS | 0.7 | 08/96 | ND | 05/19 | | | | | | CR6 | 1.8 | 05/16 | ND | 05/19 | | | BAS-3 | MUNICIPAL | ACTIVE | VOCS | ND | 06/89 | ND | 09/19 | VULNERABLE | | | | | NITRATE (N) | 28.0 | 05/16 | 5.2 | 11/19 | (NO3(N),CLO4) | | | | | CLO4 | 21.0 | 10/14 | 4.3 | 11/19 | | | | | | AS
CR6 | 4.0
1.8 | 08/76
05/16 | ND
ND | 09/19
09/19 | | | | | | 0110 | 1.0 | 00/10 | ND | 00/10 | | | BAS-4 | MUNICIPAL | INACTIVE | VOCS | ND | 03/85 | ND | 06/16 | | | | | | NITRATE (N) | 24.8 | 01/13 | 12.0 | 12/16 | | | | | | CLO4
AS | 23.0
1.0 | 03/13
08/96 | 7.6
ND | 12/16
05/16 | | | | | | CR6 | 2.3 | 05/16 | 2.3 | 05/16 | | | CITY | IDDIOATION | A OTUE | V002 | NID | 00/00 | NID | 05/00 | VULNEDADLE | | CITY | IRRIGATION | ACTIVE | VOCS
NITRATE (N) | ND
10.1 | 06/88
09/93 | ND
7.0 | 05/08
11/08 | VULNERABLE
(NO3(N)) | | | | | CLO4 | ND | 08/97 | ND | 08/08 | (1400(14)) | | | | | AS | 0.7 | 08/96 | ND | 08/06 | | | | | | CR6 | 0.2 | 12/00 | ND | 07/01 | | | COL-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | 21.0 | 09/75 | 2.3 | 10/76 | | | | | | CLO4 | NA | NA | NA | NA | | | COL-2 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | 26.5 | 10/76 | 26.5 | 10/76 | | | | | | CLO4 | NA
19.0 | NA
06/79 | NA
19.0 | NA
06/79 | | | | | | AS | 18.0 | 06/78 | 18.0 | 06/78 | | | COL-4 | MUNICIPAL | ACTIVE | VOCS | ND | 09/97 | ND | 05/19 | VULNERABLE | | | | | | | | | | | | | | <u> </u> | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | 1 | |-------------|----------------|-------------------|---|-------------|----------------|-------------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | _ | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | AUTDATE (AI) | | 00/00 | | 11110 | (1224)) | | | | | NITRATE (N)
CLO4 | 14.5
2.9 | 03/83
04/11 | 5.4
ND | 11/19
05/19 | (NO3(N)) | | | | | AS | 0.7 | 08/96 | ND | 05/19 | | | | | | CR6 | 1.7 | 02/17 | ND | 05/19 | | | COL E | MUNICIDAL | DESTROYER | 1/000 | NIA | NIA | NIA | NIA | | | COL-5 | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 001.0 | MUNICIDAL | IN A OTIVE | DOE | 7.0 | 07/05 | ND | 00/44 | | | COL-6 | MUNICIPAL | INACTIVE | PCE
NITRATE (N) | 7.2
12.7 | 07/85
06/85 | ND
8.1 | 02/11
03/11 | | | | | | CLO4 | 2.1 | 03/11 | 2.1 | 03/11 | | | | | | AS | 4.0 | 08/76 | ND | 05/10 | | | | | | CR6 | 1.0 | 07/01 | 1.0 | 07/01 | | | COL-7 | MUNICIPAL | DESTROYED | PCE | 22.0 | 12/87 | 3.1 | 11/99 | | | | | | TCE | 9.9 | 01/80 | ND | 09/99 | | | | | | 1,1-DCE | 1.1 | 03/85 | ND | 09/99 | | | | | | 1,1,1-TCA | 1.7 | 07/85 | ND
15.4 | 09/99 | | | | | | NITRATE (N)
CLO4 | 26.7
4.2 | 05/79
01/02 | 15.4
4.2 | 01/00
01/02 | | | | | | AS | 0.9 | 08/96 | ND | 01/00 | | | 001.0 | | | 205 | | 00/00 | | 40/00 | | | COL-8 | MUNICIPAL | INACTIVE | PCE
NITRATE (N) | 0.2
27.1 | 09/80
06/83 | ND
11.5 | 12/96
12/96 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 6.0 | 08/79 | ND | 03/85 | | | HICHWAY | MUNICIDAL | A CTIVE | TOE | 0.6 | 10/00 | ND | 00/10 | VULNERABLE | | HIGHWAY | MUNICIPAL | ACTIVE | TCE
PCE | 0.6
0.1 | 12/80
12/80 | ND
ND | 08/19
08/19 | (NO3(N),CLO4) | | | | | NITRATE (N) | 19.0 | 08/15 | 3.3 | 05/20 | (1100(11),020-1) | | | | | CLO4 | 12.0 | 08/15 | ND | 05/20 | | | | | | AS | 0.8 | 08/96 | ND | 08/19 | | | | | | CR6 | 1.0 | 07/01 | ND | 08/19 | | | HIGHWAY 2 | MUNICIPAL | ACTIVE | VOCS | ND | 10/10 | ND | 05/20 | VULNERABLE | | | | | NITRATE (N) | 6.1 | 11/15 | 4.2 | 05/20 | (NO3(N)) | | | | | CLO4
AS | ND
ND | 10/10
10/10 | ND
ND | 05/20
12/19 | | | | | | CR6 | 1.7 | 10/10 | ND | 12/19 | | | | | | | | | | | | | L HILL 2 | MUNICIPAL | DESTROYED | VOCS | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | | | | | | | MALON | MUNICIPAL | ACTIVE | VOCS | ND | 08/96 | ND | 05/20 | VULNERABLE | | | | | NITRATE (N)
CLO4 | 9.5
ND | 09/87
08/97 | 2.7
ND | 05/20
09/19 | (NO3(N)) | | | | | AS | 0.7 | 08/96 | ND | 08/18 | | | | | | CR6 | 1.0 | 07/01 | ND | 09/15 | | | GOLDEN STAT | TE WATER COMPA | ANY/SAN GABRIEL V | ALLEY DISTRICT (SC | UTH ARCADI | IA) | | | | | | | | , , , , , , , , , , , , , , , , , | | , | | | | | AZU 1 | MUNICIPAL | DESTROYED | TCE | 15.0 | 07/93 | 0.6 | 01/95 | | | | | | PCE
NITRATE (N) | 1.9
16.5 | 07/93
12/90 | ND
7.9 | 01/95
07/02 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 0.6 | 08/96 | 0.6 | 08/96 | | | EARL 1 | MUNICIPAL | DESTROYED | PCE | 6.0 | 09/03 | 6.0 | 09/03 | | | EARL | WONICIFAL | DESTRUTED | NITRATE (N) | 1.6 | 08/03 | 1.6 | 09/03 | | | | | | CLO4 | ND | 08/97 | ND | 08/03 | | | | | | AS | 0.5 | 08/96 | ND | 07/01 | | | ENC 1 | MUNICIPAL | ACTIVE | TCE | 21.0 | 04/03 | 1.7 | 02/20 | VULNERABLE |
| LINO | WOITION AL | AOTIVE | PCE | 3.5 | 04/03 | 0.8 | 02/20 | (VOC,NO3(N),CLO4) | | | | | NITRATE (N) | 17.5 | 08/91 | 2.5 | 02/20 | | | | | | CLO4 | 5.7 | 02/13 | ND | 11/19 | | | | | | AS
CR6 | ND
8.2 | 07/89
07/01 | ND
7.8 | 05/19
05/19 | | | | | | ONO | 0.2 | 07/01 | 7.0 | 00/10 | | | ENC 2 | MUNICIPAL | ACTIVE | TCE | 29.1 | 02/01 | 1.6 | 05/20 | VULNERABLE | | | | | PCE
NITRATE (N) | 6.4
4.7 | 02/15
02/09 | 0.5
1.3 | 05/20
05/20 | (VOC) | | | | | CLO4 | 4.7
1.5 | 02/09 | ND | 08/19 | | | | | | AS | 0.7 | 08/96 | ND | 08/17 | | | | | | CR6 | 7.9 | 08/17 | 7.9 | 08/17 | | | ENC 3 | MUNICIPAL | ACTIVE | TCE | 19.0 | 03/17 | 8.8 | 05/20 | VULNERABLE | | 2.40 0 | MOTHOR AL | , to live | 1.0L | 10.0 | 00/11 | 5.0 | 00/20 | VOLINIDEL | | | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | | 1 | |------------|---|------------|---------------------|-------------------|----------------|------------|----------------|-----------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | . ` ` | IC HIGH | | RECENT | REMARKS | | WEEE WAINE | OOAGE | o i Ai o o | OF CONCERN | VALUE | DATE | VALUE | DATE | - NEIDAINIO | | | | | 11 | | | | | | | | | | PCE | 7.8 | 03/17 | 3.8 | 05/20 | (VOC,NO3(N),AS) | | | | | NITRATE (N) | 9.8 | 07/93 | 3.8 | 05/20 | | | | | | CLO4
AS | 1.9
16.3 | 03/10
07/90 | ND
ND | 05/20
08/17 | | | | | | CR6 | 8.0 | 09/01 | 7.8 | 08/17 | | | | | | Orto | 0.0 | 00/01 | 7.0 | 00/11 | | | FAR 1 | MUNICIPAL | ACTIVE | TCE | 11.9 | 10/80 | 0.5 | 05/20 | VULNERABLE | | | | | PCE | 3.1 | 10/87 | ND | 02/20 | (VOC) | | | | | NITRATE (N) | 2.9 | 07/89 | 0.5 | 05/20 | | | | | | CLO4
AS | ND
2.7 | 08/97 | ND | 05/20
05/19 | | | | | | CR6 | 1.6 | 08/97
05/16 | ND
ND | 05/19 | | | | | | 0.10 | | 00/10 | | 00/10 | | | FAR 2 | MUNICIPAL | ACTIVE | TCE | 12.9 | 07/80 | ND | 05/20 | VULNERABLE | | | | | PCE | 2.6 | 10/87 | ND | 08/19 | (VOC) | | | | | NITRATE (N) | 2.8 | 07/90 | 0.7 | 08/19 | | | | | | CLO4
AS | ND
0.9 | 08/97
08/96 | ND
ND | 08/19
08/17 | | | | | | CR6 | 2.6 | 08/17 | 2.6 | 08/17 | | | | | | 0.10 | 2.0 | 00/11 | 2.0 | 00/11 | | | GAR 1 | MUNICIPAL | DESTROYED | VOCS | ND | 08/99 | ND | 07/03 | | | | | | PCE | 4.5 | 10/03 | 4.5 | 10/03 | | | | | | NITRATE (N) | 1.9 | 08/03 | 1.7 | 09/03 | | | | | | CLO4 | ND | 08/97 | ND | 08/03 | | | | | | AS | 0.5 | 08/96 | ND | 08/03 | | | GAR 2 | MUNICIPAL | DESTROYED | PCE | 12.0 | 07/03 | 11.0 | 08/03 | | | 0, 2 | | 5201110125 | TCE | 2.2 | 08/03 | 2.2 | 08/03 | | | | | | NITRATE (N) | 1.6 | 08/97 | 1.0 | 07/02 | | | | | | CLO4 | ND | 08/97 | ND | 08/03 | | | | | | AS | 0.5 | 08/96 | ND | 08/00 | | | GAR 3 | MUNICIPAL | ACTIVE | TCE | 0.8 | 02/17 | ND | 05/18 | VULNERABLE | | GAR 3 | MUNICIPAL | ACTIVE | PCE | 7.8 | 02/17 | 3.1 | 05/18 | (VOC) | | | | | NITRATE (N) | 3.8 | 02/17 | 2.1 | 05/19 | (100) | | | | | CLO4 | ND | 06/16 | ND | 05/18 | | | | | | AS | ND | 06/16 | ND | 05/19 | | | | | | CR6 | 6.2 | 06/16 | 5.5 | 05/19 | | | GID 1 | MUNICIPAL | DESTROYED | TCE | 6.6 | 04/85 | 4.1 | 09/93 | | | GID I | MUNICIPAL | DESTRUTED | PCE | 0.9 | 09/93 | 0.9 | 09/93 | | | | | | NITRATE (N) | 9.2 | 09/93 | 9.2 | 09/93 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | GID 2 | MUNICIPAL | DESTROYED | TCE | 86.0 | 05/87 | 5.2 | 09/93 | | | | | | PCE
CTC | 20.0 | 05/87
05/87 | 1.5
ND | 09/93
09/93 | | | | | | NITRATE (N) | 3.0
10.3 | 09/93 | 10.3 | 09/93 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | GRA 1 | MUNICIPAL | DESTROYED | TCE | 33.0 | 09/88 | 25.4 | 11/94 | | | | | | PCE | 2.5 | 11/93 | 0.6 | 11/94 | | | | | | NITRATE (N)
CLO4 | 19.6
NA | 08/89
NA | 10.0
NA | 07/95
NA | | | | | | AS | 18.0 | 06/78 | ND | 08/94 | | | | | | 7.0 | | 00//0 | | 00/01 | | | GRA 2 | MUNICIPAL | INACTIVE | TCE | 31.3 | 08/89 | 24.6 | 08/94 | | | | | | PCE | 3.3 | 09/94 | 3.3 | 09/94 | | | | | | 1,1-DCE | 4.8 | 08/94 | 4.8 | 08/94 | | | | | | NITRATE (N)
CLO4 | 18.5 | 07/90
NA | 10.0
NA | 07/95
NA | | | | | | AS | NA
ND | 01/89 | ND | 08/94 | | | | | | 7.0 | | 0.700 | | 00/01 | | | JEF 1 | MUNICIPAL | INACTIVE | TCE | 340.0 | 01/80 | 98.0 | 01/85 | | | | | | PCE | 23.0 | 03/81 | 8.0 | 01/85 | | | | | | 1,1,1-TCA | 31.0 | 01/85 | 31.0 | 01/85 | | | | | | NITRATE (N) | 11.7 | 07/83 | 11.0 | 03/86 | | | | | | CLO4 | NA | NA | NA | NA | | | JEF 2 | MUNICIPAL | DESTROYED | TCE | 260.0 | 01/80 | 140.0 | 01/85 | | | | | | PCE | 15.0 | 03/81 | 6.0 | 01/85 | | | | | | 1,1-DCE | 20.0 | 01/85 | 20.0 | 01/85 | | | | | | 1,1,1-TCA | 54.0 | 01/85 | 54.0 | 01/85 | | | | | | NITRATE (N) | 15.4 | 06/77 | 13.8 | 06/79 | | | | | | CLO4 | NA | NA | NA | NA | | | JEF 3 | MUNICIPAL | DESTROYED | TCE | 121.0 | 02/81 | 4.9 | 08/92 | | | - | | | PCE | 12.0 | 03/81 | 0.6 | 08/92 | | | | | | 1,1,1-TCA | 29.0 | 04/85 | ND | 08/92 | | | | | | | | | | | | | | | | CONCENTRA | | | | | | |---------------|-------------|-----------|---------------------------|------------|----------------|-----------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | REMARKS | | | ' | | | • | | • | | | | | | | T-1,2-DCE | 2.4 | 04/85 | ND | 08/92 | | | | | | NITRATE (N) | 11.7 | 12/84 | 5.3 | 08/92 | | | | | | CLO4 | NA | NA | NA | NA
on/oc | | | | | | AS | ND | 12/84 | ND | 08/86 | | | JEF 4 | MUNICIPAL | ACTIVE | VOCS | ND | 08/89 | ND | 08/19 | | | | | | NITRATE (N) | 3.3 | 07/89 | 0.7 | 08/19 | | | | | | CLO4 | ND | 08/97 | ND | 08/19 | | | | | | AS | 0.7 | 08/96 | ND | 08/18 | | | | | | CR6 | 1.3 | 07/01 | ND | 08/15 | | | PER 1 | MUNICIPAL | ACTIVE | TCE | 25.8 | 10/80 | 0.8 | 05/20 | VULNERABLE | | | | | PCE | 6.8 | 07/87 | ND | 05/20 | (VOC,NO3(N)) | | | | | NITRATE (N) | 8.6 | 12/11 | 2.0 | 05/20 | | | | | | CLO4 | ND | 08/97 | ND | 11/19 | | | | | | AS | 0.9 | 08/96 | ND | 08/18 | | | | | | CR6 | 5.6 | 08/15 | 5.6 | 08/15 | | | S G 1 | MUNICIPAL | ACTIVE | PCE | 46.0 | 04/06 | 11.0 | 05/20 | VULNERABLE | | | | | TCE | 6.8 | 12/03 | 1.0 | 05/20 | (VOC,NO3(N),CLO4) | | | | | C-1,2-DCE | 1.8 | 11/04 | ND | 05/20 | | | | | | 1,1-DCA | 1.8 | 06/04 | ND | 11/19 | | | | | | 1,1-DCE | 0.7 | 11/04 | ND | 05/20 | | | | | | FREON 11 | 1.2 | 08/03 | ND | 08/19 | | | | | | NITRATE (N)
CLO4 | 6.1
8.1 | 04/02
08/03 | 2.9
ND | 05/20
05/20 | | | | | | AS | 2.7 | 08/94 | ND | 08/19 | | | | | | CR6 | 5.9 | 12/01 | 5.1 | 08/19 | | | | | | | | | | | | | S G 2 | MUNICIPAL | ACTIVE | PCE | 28.0 | 05/11 | 1.8 | 05/20 | VULNERABLE | | | | | TCE
1,1-DCE | 3.6
0.7 | 06/99
04/11 | ND
ND | 05/20
11/19 | (VOC,NO3(N),CLO4) | | | | | C-1,2-DCE | 1.2 | 02/01 | ND | 05/20 | | | | | | NITRATE (N) | 17.0 | 08/16 | 11.0 | 05/20 | | | | | | CLO4 | 7.0 | 02/03 | ND | 05/20 | | | | | | AS | 0.8 | 08/96 | ND | 08/18 | | | | | | CR6 | 8.0 | 08/15 | 8.0 | 08/15 | | | SAX 1 | MUNICIPAL | DESTROYED | PCE | 1.4 | 04/97 | 0.9 | 12/97 | | | 0,000 | WOTTON 71E | BEOTHOTEB | NITRATE (N) | 7.5 | 10/97 | 7.5 | 10/97 | | | | | | CLO4 | ND | 08/97 | ND | 12/97 | | | | | | AS | 0.3 | 08/96 | 0.3 | 08/96 | | | SAX 3 | MUNICIPAL | INACTIVE | PCE | 1.3 | 09/19 | 1.3 | 09/19 | VULNERABLE | | OPV 0 | WONION AL | INACTIVE | NITRATE (N) | 6.2 | 11/96 | 2.4 | 06/19 | (NO3(N)) | | | | | CLO4 | ND | 08/97 | ND | 06/19 | (1100(11)) | | | | | AS | 0.4 | 08/96 | ND | 06/19 | | | | | | CR6 | 5.8 | 08/16 | 4.2 | 06/19 | | | SAX 4 | MINICIPAL | ACTIVE | PCE | 0.8 | 12/16 | ND | 11/19 | VULNERABLE | | SAX 4 | MINIONAL | ACTIVE | TCE | 0.5 | 12/16 | ND | 03/19 | (AS) | | | | | NITRATE (N) | 2.7 | 08/99 | ND | 11/19 | (7.6) | | | | | CLO4 | ND | 08/97 | ND | 03/18 | | | | | | AS | 8.0 | 11/19 | 8.0 | 11/19 | | | | | | CR6 | 4.8 | 11/14 | ND | 11/19 | | | GREEN, WALT | ΓER | | | | | | | | | | | | | | | | | | | NA | IRRIGATION | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | NA | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | HALL (W.E.) C | OMPANY | | | | | | | | | NA | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | INA | DOMESTIC | INACTIVE | NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | HANGEN ALI | `E | | | | | | | | | HANSEN, ALIC | , E | | | | | | | | | 2946C | IRRIGATION | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | | | | CONCENTRA | TION (NITRAT | E IN MG/L, O | OTHERS IN U | JG/L) | | |--------------|----------------|--------------|------------------------|---------------|----------------|---------------|----------------|----------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | | | | | | | | DUA 1 | INDUSTRIAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | OLOT | IVA | IVA | INA | 14/3 | | | EL 1 | INDUSTRIAL | ACTIVE | VOCS | ND | 05/98 | ND | 12/19 | | | | | | NITRATE (N)
CLO4 | 3.8
ND | 02/93
03/98 | 0.7
ND | 12/19
03/98 | | | | | | | | | | | | | EL 3 | INDUSTRIAL | ACTIVE | VOCS
NITRATE (N) | ND
5.0 | 06/98
05/93 | ND
1.1 | 12/19
12/19 | | | | | | CLO4 | ND | 03/98 | ND | 03/98 | | | E. 4 | INDUCTOR | A OT!\ /F | V000 | ND | 40/07 | ND | 40/47 | | | EL 4 | INDUSTRIAL | ACTIVE | VOCS
NITRATE (N) | ND
1.4 | 12/87
06/98 | ND
1.0 | 10/17
10/17 | | | | | | CLO4 | NA | NA | NA | NA | | | KIN 1 | INDUSTRIAL | DESTROYED | VOCS | NA | NA | NA | NA | | | KIN I | INDUSTRIAL | DESTROTED | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | HARTLEY, DA | VID | | | | | | | | | | | INIA CT": (T | VC 22
 | 40.00 | N/S | 40/05 | | | NA | DOMESTIC | INACTIVE | VOCS
NITRATE (N) | ND
25.1 | 10/95
01/96 | ND
16.9 | 10/95
04/96 | | | | | | CLO4 | NA | NA | NA | NA | | | HEMI OCK MII | TUAL WATER COM | MDANV | | | | | | | | | | | | | | | | | | NORTH | MUNICIPAL | ACTIVE | PCE
TCE | 51.7 | 04/82 | ND | 09/19 | VULNERABLE | | | | | NITRATE (N) | 0.7
4.3 | 12/87
12/06 | ND
1.3 | 09/19
12/19 | (VOC) | | | | | CLO4 | ND | 09/97 | ND | 03/20 | | | | | | AS
CR6 | 2.7
1.0 | 12/08
12/00 | ND
ND | 12/17
12/17 | | | | | | | | | | | | | SOUTH | MUNICIPAL | ACTIVE | PCE
TCE | 210.0
0.9 | 12/87
04/89 | ND
ND | 03/20
09/19 | VULNERABLE
(VOC,NO3(N)) | | | | | NITRATE (N) | 7.4 | 12/94 | 0.4 | 03/20 | (VOC,IVOS(IV)) | | | | | CLO4 | ND | 09/97 | ND | 09/19 | | | | | | AS
CR6 | 2.1
1.1 | 08/96
12/00 | ND
ND | 12/17
12/17 | | | INDUCTOV WA | TERMORKS SVST | EM CITY OF | | | | | | | | INDUSTRY WA | ATERWORKS SYST | EM, CITY OF | | | | | | | | 01 | MUNICIPAL | INACTIVE | TCE | 40.0 | 01/80 | 1.7 | 10/92 | | | | | | PCE
CTC | 9.0
5.7 | 04/80
10/92 | 5.0
5.7 | 10/92
10/92 | | | | | | 1,1-DCE | 15.3 | 10/92 | 15.3 | 10/92 | | | | | | 1,2-DCA | 0.6 | 10/92 | 0.6 | 10/92 | | | | | | NITRATE (N)
CLO4 | 13.6
NA | 10/92
NA | 13.6
NA | 10/92
NA | | | | | | AS | ND | 01/80 | ND | 01/80 | | | 02 | MUNICIPAL | INACTIVE | TCE | 19.0 | 01/80 | 2.3 | 04/81 | | | | | | PCE | 10.0 | 04/81 | 10.0 | 04/81 | | | | | | NITRATE (N)
CLO4 | 12.5
100.0 | 02/86
04/99 | 12.5
100.0 | 02/86
04/99 | | | | | | AS | ND | 01/80 | ND | 01/80 | | | 03 | MUNICIPAL | INACTIVE | PCE | 2.6 | 09/80 | 1.6 | 07/06 | | | 30 | MOTHOII AL | II WOTIVE | TCE | 12.0 | 07/06 | 12.0 | 07/06 | | | | | | CTC | 0.5 | 07/06 | 0.5 | 07/06 | | | | | | 1,2-DCA
NITRATE (N) | 0.5
7.0 | 07/06
08/00 | 0.5
ND | 07/06
07/06 | | | | | | CLO4 | 120.0 | 04/99 | ND | 07/06 | | | | | | AS
CR6 | 5.4
6.9 | 07/95
11/00 | ND
6.9 | 08/04
11/00 | | | 0.4 | MUNICIDAL | INIA OTIVE | | | | | | | | 04 | MUNICIPAL | INACTIVE | PCE
TCE | 2.4
8.0 | 08/01
11/01 | 0.5
1.7 | 07/06
07/06 | | | | | | 1,1-DCE | 0.9 | 09/02 | 0.6 | 07/06 | | | | | | 1,2-DCA
CTC | 1.0
0.7 | 11/01
11/01 | ND
ND | 07/06
07/05 | | | | | | NITRATE (N) | 9.5 | 06/02 | 7.5 | 04/07 | | | | | | CLO4 | 14.8 | 06/01 | 6.5 | 01/06 | | | | | | AS
CR6 | 6.9
8.9 | 07/95
11/00 | 2.8
8.4 | 08/01
06/01 | | | | | | | | | | | | | | | 1 | CONCENTRA | TION (NITRAT | FIN MG/L C | THERS IN II | IG/L) | | |--------------|----------------|---------------|---|---|---|--|--|------------------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | MOST R | | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | 05 | MUNICIPAL | ACTIVE | PCE
TCE
1,2-DCA
1,1-DCE
NITRATE (N)
CLO4
AS
CR6 | 14.0
6.8
0.7
3.6
7.3
11.0
6.8
8.3 | 11/19
04/96
09/02
11/19
07/16
04/04
07/95
05/11 | 12.0
3.7
ND
2.0
6.3
ND
2.2
6.5 | 05/20
05/20
08/19
05/20
05/20
05/17
11/18
12/15 | VULNERABLE
(VOC,NO3(N),CLO4,AS) | | 05TH AVE | MUNICIPAL | DESTROYED | TCE
NITRATE (N)
CLO4 | 0.3
NA
NA | 12/80
NA
NA | 0.3
NA
NA | 12/80
NA
NA | | | KNIGHT, KATH | HRYN M. | | | | | | | | | NA | DOMESTIC | INACTIVE | VOCS
NITRATE (N)
CLO4 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | | LANDEROS, J | ОНИ | | | | | | | | | NA | DOMESTIC | INACTIVE | VOCS
NITRATE (N)
CLO4 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | | LA PUENTE V | ALLEY COUNTY W | ATER DISTRICT | | | | | | | | 01 | MUNICIPAL | DESTROYED | VOCS
NITRATE (N)
CLO4 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | | 02 | MUNICIPAL | ACTIVE | TCE PCE CTC 1,1-DCA 1,2-DCA 1,1-DCE C-1,2-DCE NITRATE (N) CLO4 AS CR6 | 120.0
6.6
8.5
2.1
6.1
1.6
1.9
8.0
183.0
1.9
3.7 | 12/12
03/00
12/02
11/03
03/00
12/00
04/10
05/17
02/98
04/06 | 40.0
2.5
1.8
ND
1.1
ND
0.8
6.6
34.0
ND
3.6 | 12/19
12/19
12/19
12/19
12/19
12/19
12/19
06/19
05/17
06/19 | VULNERABLE
(VOC,NO3(N),CLO4) | | 03 | MUNICIPAL | ACTIVE | TCE PCE CTC 1,1-DCE 1,2-DCA C-1,2-DCE 1,1-DCA NITRATE (N) CLO4 AS CR6 | 72.0
6.3
8.5
0.9
6.7
1.4
0.5
21.5
174.0
2.1
4.3 | 03/11
04/85
11/04
10/95
02/99
01/97
09/01
01/80
02/98
08/04
06/01 | 2.7
ND
ND
ND
ND
ND
ND
ND
ND
3.8 | 06/19
06/19
06/19
06/19
06/19
06/19
06/19
12/19
05/17
12/19 | VULNERABLE
(VOC,NO3(N),CLO4) | | 04 | MUNICIPAL | INACTIVE | TCE PCE CTC 1,1-DCA 1,2-DCA 1,1-DCE C-1,2-DCE NITRATE (N) CLO4 AS CR6 | 84.3
6.6
7.6
0.7
8.1
1.3
15.6
5.6
159.0
2.3
4.3 | 03/00
03/00
04/95
04/04
03/00
04/97
11/98
04/95
06/97
09/94
11/00 | 46.0
2.9
1.9
0.7
4.4
0.5
1.7
4.1
71.2
ND
4.3 | 04/04
04/04
04/04
04/04
04/04
04/04
04/04
04/04
11/98
11/00 | | | 05 | MUNICIPAL | ACTIVE | TCE PCE CTC 1,1-DCA 1,2-DCA 1,1-DCE C-1,2-DCE NITRATE (N) CLO4 AS CR6 | 43.0
3.8
2.3
0.5
2.7
0.5
0.8
7.8
65.0
1.1
3.7 | 03/08
03/08
03/08
03/08
03/08
03/08
11/08
12/16
03/08
03/08 | 7.0
0.8
ND
ND
ND
ND
ND
ND
ND
7.2
14.0
ND
3.7 | 03/20
03/20
03/20
03/20
03/20
03/20
03/20
03/18
05/17
03/18 | VULNERABLE
(VOC,NO3(N),CLO4) | | | | | CONCENTE | TION /NITDAT | EIN MO" O | THERE IN | IC/L\ | - | |---------------|--------------|------------|--------------------------|--------------|----------------|------------|----------------|------------| | WELL NAME | USAGE | STATUS | CONCENTRAT | | RIC HIGH | | RECENT | REMARKS | | WEEE WAINE | 30/102 | GIATOS | OF CONCERN | VALUE | DATE | VALUE | DATE | - KEMPARKO | | LA VEDNE CI | TV OF | 1 | | | | | | | | LA VERNE, CIT | I Y OF | | | | | | | | | SNIDO | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | | | | | | | W15-L | MUNICUPAL | DESTROYED | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | W24-L | MUNICIPAL | DESTROYED | vocs | NA | NA | NA | NA | | | VV24-L | MONICII AL | DESTROTED | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | LEE, PAUL | | | | | | | | | | 01 | DOMESTIC | INIA CTIVE | VOC8 | NIA | NΙΔ | NIA | NIA | | | 01 | DOMESTIC | INACTIVE | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 02 | DOMESTIC | INACTIVE | vocs | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 03 | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 04 | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | LOS ANGELES | S, COUNTY OF | | | | | | | | | 02 | NON POTABLE | DESTROYED | PCE | 6.6 | 09/04 | 6.6 | 09/04 | | | | | | TCE | 1.3 | 09/04 | 1.3 | 09/04 | | | | | | 1,2-DCA | 0.5 | 01/96 | ND | 09/04
09/04 | | | | | | NITRATE (N)
CLO4 | 2.4
ND | 09/04
08/97 | 2.4
ND | 08/97 | | | 03 | IDDICATION | DESTROYED | DOE | 2.1 | 06/04 | 2.4 | 06/04 | | | 03 | IRRIGATION | DESTROYED | PCE
TCE | 2.1
0.7 | 06/94
06/94 | 2.1
0.7 | 06/94
06/94 | | | | | | NITRATE (N) | 1.1 | 06/94 | 1.1 | 06/94 | | | | | | CLO4 | NA | NA | NA | NA | | | 03A | IRRIGATION | DESTROYED | PCE | 2.5 | 11/99 | ND | 10/08 | | | | | | NITRATE (N)
CLO4 | 0.5
ND | 08/96
08/97 | ND
ND | 10/08
08/97 | | | | | | | | | | | | | 04 | IRRIGATION | DESTROYED | 1,1,1-TCA
NITRATE (N) | 0.7
NA | 05/87
NA | ND
NA | 11/87
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 05 | IRRIGATION | DESTROYED | PCE | 39.0 | 09/03 | 35.7 | 10/08 | | | 03 | IKKIGATION | DESTROTED | TCE | 1.3 | 09/03 | ND | 10/08 | | | | | | NITRATE (N) | 4.1 | 09/03 | 3.2 | 10/08 | | | | | | CLO4 | ND | 08/97 | ND | 08/97 | | | 06 | IRRIGATION | DESTROYED | PCE | 7.4 | 08/96 | 2.8 | 11/99 | | | | | | TCE
1,1-DCA | 8.3
2.0 | 08/96
08/96 | 2.9
ND | 11/99
11/99 | | | | | | 1,1-DCE | 1.4 | 08/96 | ND | 11/99 | | | | | | C-1,2-DCE | 4.5 | 08/96 | 8.0 | 11/99 | | | | | | NITRATE (N)
CLO4 | 2.6
NA | 08/96
NA | 1.9
NA | 11/99
NA | | | | | | | | | | | | | 600 | IRRIGATION | INACTIVE | VOCS
NITRATE (N) | ND
1.1 | 07/98
07/98 | ND
1.1 | 07/98
07/98 | | | | | | CLO4 | ND | 07/98 | ND | 07/98 | | | פוכ פרס | NON DOTABLE | INIACTIVE | 12 DCA | 0.6 | 01/06 | ND | 10/00 | | | BIG RED | NON POTABLE | INACTIVE | 1,2-DCA
NITRATE (N) | 0.6
2.7 | 01/96
09/02 | ND
ND | 10/09
10/09 | | | | | | CLO4 | ND | 08/97 | ND | 08/97 | | | NEW LAKE | NON POTABLE | INACTIVE | PCE | 19.7 | 02/00 | ND | 11/10 | | | | | | TCE | 0.9 | 02/00 | ND | 11/10 | | | | | | NITRATE (N)
CLO4 | 5.0 | 02/00
08/97 | 4.1
ND | 11/10
08/97 | | | | | | OLO4 | ND | 00/9/ | ND | 00191 | | | SF 1 | NON POTABLE | ACTIVE | TCE | 4.3 | 09/04 | ND | 12/19 | | | | | | | | | | | | | | | | CONCENTRA | TION (NITRAT | EIN MG/I | OTHERS IN I | JG/L) | |
--------------|----------------------|------------------|---------------------|--------------|----------------|-------------|----------------|---------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | EIN MG/L, C | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | , | | | 205 | | 00/04 | | 10/10 | 1 | | | | | PCE
VC | 7.6
1.4 | 09/04
12/87 | ND
ND | 12/19
12/19 | | | | | | NITRATE (N) | 3.6 | 09/02 | 1.9 | 12/19 | | | | | | CLO4 | ND | 06/97 | ND | 05/10 | | | SF 2 | NON POTABLE | ACTIVE | VOCS | NA | NA | NA | NA | | | 01 2 | NONTOTABLE | AOTIVE | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | WHI 1 | NON POTABLE | INACTIVE | PCE | 3.8 | 09/04 | 1.4 | 11/10 | | | VVIII | NONTOTABLE | INACTIVE | TCE | 1.0 | 09/04 | ND | 11/10 | | | | | | NITRATE (N) | 1.7 | 10/09 | 1.2 | 11/10 | | | | | | CLO4 | ND | 08/97 | ND | 08/97 | | | LOS FLORES | MUTUAL WATER C | OMPANY | | | | | | | | | | | | | | | | | | HI 1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | | | | | | | LO 1 | MUNICIPAL | DESTROYED | VOCS | NA
NA | NA | NA | NA
NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | • | - | - | - | | | LOUCKS, DAV | מוי | | | | | | | | | NA | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | MAECHTLEN E | ESTATE | | | | | | | | | | | | | | | | | | | M-N | DOMESTIC | INACTIVE | VOCS
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | OLD60 | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | SNIDO | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | MANNING BRO | OTHERS ROCK AN | D SAND COMPANY | | | | | | | | 00000 | INDUCTOR | DESTROYER | TOF | 500.0 | 40/70 | 100.0 | 04/00 | | | 36230 | INDUSTRIAL | DESTROYED | TCE
CLO4 | 520.0
NA | 12/79
NA | 100.0
NA | 01/80
NA | | | | | | 0204 | 147. | 10/ | 10.1 | 147 (| | | MAPLE WATE | R COMPANY | | | | | | | | | 01 | MUNICIPAL | DESTROYED | VOCS | ND | 06/89 | ND | 07/96 | | | | | | NITRATE (N) | 15.4 | 09/94 | 12.5 | 07/96 | | | | | | CLO4 | NA | NA
ozvoo | NA | NA
07/00 | | | | | | AS | 1.3 | 07/96 | 1.3 | 07/96 | | | 02 | MUNICIPAL | DESTROYED | VOCS | ND | 06/89 | ND | 07/96 | | | | | | NITRATE (N) | 14.2 | 11/89 | 12.5 | 07/96 | | | | | | CLO4
AS | NA
1.3 | NA
07/96 | NA
1.2 | NA
07/96 | | | | | | AS | 1.3 | 07/90 | 1.3 | 07790 | | | MARTINEZ, FR | RANCES M. | | | | | | | | | NA | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | 1971 | 2 SINLO NO | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | METROPOLITA | AN WATER DISTRI | CT OF SOUTHERN C | CALIFORNIA | | | | | | | 00 | NON BOTABLE | DESTROYER | V000 | NIA | ALA | NI A | NIA | | | 02 | NON-POTABLE | DESTROYED | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 00 | NON DOTABLE | DECTROVER | VCCC | N 1.4 | N.1.A | N.1.0 | N/A | | | 03 | NON-POTABLE | DESTROYED | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | MOI SON COO | De liev i i e (Mil i | EDCOODS II O | | | | | | | | MIOF2ON COO | ORS USA LLC (MILL | EKCOOKS LLC) | | | | | | | | 01 | INDUSTRIAL | INACTIVE | VOCS | ND | 01/92 | ND | 10/09 | | | | | | NITRATE (N)
CLO4 | 2.2
ND | 01/93
06/97 | 1.0 | 10/09
06/08 | | | | | | AS | ND
3.9 | 06/97 | ND
3.9 | 06/08 | | | | | | | 0.0 | 30,00 | 0.0 | 20,00 | | | | | | CONCENTRA | TION (NITRAT | E IN MG/L, O | OTHERS IN U | JG/L) | БЕШАВКО | |-------------|------------------|-------------------|----------------------|--------------|----------------|-------------|----------------|----------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | RIC HIGH | MOST | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | | | | | | | | 02 | INDUSTRIAL | ACTIVE | VOCS | ND | 01/92 | ND | 11/19 | | | | | | NITRATE (N) | 3.2 | 10/92 | 0.7 | 11/19 | | | | | | CLO4 | ND | 06/97 | ND | 06/14 | | | | | | AS | 3.5 | 05/08 | 3.3 | 06/13 | | | | | | CR6 | ND | 12/14 | ND | 12/14 | | | N BREWER | INDUSTRIAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | MOON VALLE | Y NURSERY (COINE | ER, JAMES W., DBA | COINER NURSERY) | | | | | | | 03 | NON-POTABLE | INACTIVE | PCE | 293.5 | 02/98 | 170.0 | 10/01 | | | | | | TCE | 10.2 | 11/87 | 3.4 | 10/01 | | | | | | CTC | 1.6 | 08/87 | 1.6 | 10/01 | | | | | | 1,1-DCE
C-1,2-DCE | 6.7
6.8 | 02/98
07/96 | 4.6
2.7 | 10/01
10/01 | | | | | | 1,1,1-TCA | 22.0 | 02/98 | 12.0 | 10/01 | | | | | | NITRATE (N) | 15.1 | 10/01 | 10.1 | 09/07 | | | | | | CLO4 | 9.0 | 02/98 | ND | 09/98 | | | 05R | NON-POTABLE | ACTIVE | PCE | 7.7 | 02/98 | ND | 11/19 | | | | | | TCE | 1.6 | 10/01 | ND | 11/19 | | | | | | CTC | 2.7 | 07/96 | ND | 11/19 | | | | | | 1,1-DCE | 5.5 | 10/01 | ND | 11/19 | | | | | | NITRATE (N) | 24.8 | 10/09 | 4.4 | 11/19 | | | | | | CLO4 | 9.0 | 02/98 | 4.0 | 09/98 | | | MONROVIA, C | ITY OF | | | | | | | | | 01 | MUNICIPAL | DESTROYED | TCE | 46.8 | 11/92 | 12.0 | 04/02 | | | | | | PCE | 3.9 | 03/81 | 8.0 | 04/02 | | | | | | 1,1-DCE | 1.2 | 08/96 | 0.9 | 04/02 | | | | | | 1,1,1-TCA | 2.1 | 08/87 | ND | 07/01 | | | | | | NITRATE (N)
CLO4 | 17.6
11.1 | 02/01
02/01 | 13.6
8.4 | 03/02
04/02 | | | | | | AS | 2.5 | 10/00 | 2.5 | 10/00 | | | 02 | MUNICIPAL | ACTIVE | TCE | 167.0 | 08/82 | 1.3 | 04/20 | VULNERABLE | | 02 | WONION AL | AOTIVE | PCE | 11.0 | 08/82 | ND | 04/20 | (VOC,CLO4,NO3(N)) | | | | | 1,1,1-TCA | 7.1 | 02/87 | ND | 07/19 | (:, :, : (: - : // | | | | | 1,1-DCE | 3.4 | 06/87 | ND | 04/20 | | | | | | 1,2-DCA | 1.5 | 02/87 | ND | 07/19 | | | | | | NITRATE (N) | 16.0 | 04/18 | 3.1 | 04/20 | | | | | | CLO4 | 6.9 | 04/15 | ND | 04/20 | | | | | | AS
CR6 | 0.9
7.1 | 08/96
04/16 | ND
1.3 | 04/19
04/19 | | | | | | | | | | | | | 03 | MUNICIPAL | ACTIVE | TCE
PCE | 18.0
17.0 | 08/82
08/82 | 2.8
ND | 04/20
04/20 | VULNERABLE
(VOC,NO3(N)) | | | | | 1,1-DCE | 0.8 | 12/08 | ND | 10/19 | (٧٥٥,١٩٥٥(١٩)) | | | | | NITRATE (N) | 11.2 | 05/76 | 2.4 | 04/20 | | | | | | CLO4 | ND | 08/97 | ND | 07/19 | | | | | | AS | 3.6 | 08/97 | ND | 04/19 | | | | | | CR6 | 5.8 | 08/13 | ND | 04/19 | | | 04 | MUNICIPAL | ACTIVE | TCE | 6.5 | 02/91 | ND | 04/20 | VULNERABLE | | | | | PCE | 1.0 | 02/91 | ND | 04/20 | (VOC,NO3(N)) | | | | | 1,1-DCE | 1.1 | 01/05 | ND | 04/20 | | | | | | NITRATE (N)
CLO4 | 6.5
ND | 06/91
08/97 | 2.2
ND | 04/20
10/19 | | | | | | AS | 3.8 | 08/97 | ND | 10/19 | | | | | | CR6 | 1.1 | 07/01 | ND | 10/19 | | | 05 | MUNICIPAL | ACTIVE | TCE | 8.2 | 10/18 | 0.6 | 01/20 | VULNERABLE | | | | | PCE | 1.0 | 10/02 | ND | 01/20 | (VOC,NO3(N)) | | | | | 1,1-DCE | 1.0 | 10/02 | ND | 01/20 | | | | | | NITRATE (N) | 6.6 | 01/91 | 1.1 | 01/20 | | | | | | CLO4 | ND | 08/97 | ND | 07/19 | | | | | | AS
CR6 | 1.0
1.5 | 08/96
04/16 | ND
ND | 04/19
04/19 | | | 20 | MINIOIS | A O.T.) /= | | | | | | \## NEDAS: 5 | | 06 | MUNICIPAL | ACTIVE | TCE | 23.0 | 04/14 | 21.0 | 04/20 | VULNERABLE | | | | | PCE
1,1-DCE | 2.8
0.8 | 01/19
10/07 | 2.0
ND | 04/20
04/20 | (VOC,NO3(N),CLO4) | | | | | NITRATE (N) | 9.5 | 06/14 | 6.5 | 04/20 | | | | | | CLO4 | 4.9 | 06/14 | ND | 07/19 | | | | | | AS | ND | 10/99 | ND | 04/19 | | | | | | | | | | | | | | | | CONCENTRAT | TION (NITRAT | E IN MG/L | THERS IN I | JG/L) | | |-------------|--------------|-----------|----------------------|--------------|----------------|-------------|----------------|---------------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | | | 0.7.1.00 | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | CR6 | 3.5 | 04/16 | ND | 04/19 | | | | | | ONO | 0.0 | 04/10 | ND | 04/15 | | | MONROVIA NU | JRSERY | | | | | | | | | DIV 4 | IRRIGATION | DESTROYED | VOCS | ND | 08/96 | ND | 02/07 | | | | | | NITRATE (N) | 48.1 | 09/04 | 45.6 | 02/07 | | | | | | CLO4 | ND | 02/98 | ND | 02/98 | | | DIV 8 | IRRIGATION | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | MONTEREY PA | ARK, CITY OF | | | | | | | | | 01 | MUNICIPAL | ACTIVE | PCE | 64.1 | 12/08 | 6.1 | 05/20 | VULNERABLE | | | | | TCE | 4.1 | 05/04 | ND | 05/20 | (VOC,NO3(N),CLO4) | | | | | 1,1-DCE | 0.6 | 05/04 | ND | 05/20 | | | | | | 1,1-DCA
C-1,2-DCE | 1.0
1.0 | 05/04
03/04 | ND
ND | 05/20
05/20 | | | | | | NITRATE (N) | 5.4 | 12/12 | 1.6 | 05/20 | | | | | | CLO4 | 4.7 | 05/04 | ND | 08/19 | | | | | | AS | 0.5 | 07/96 | ND | 08/17 | | | | | | CR6 | 6.2 | 11/00 | 5.1 | 08/17 | | | 02 | MUNICIPAL | DESTROYED | PCE | 6.4 | 04/98 | 6.4 | 04/98 | | | | | | NITRATE (N) | 4.1 | 07/95 | 2.9 | 07/97 | | | | | | CLO4 | 3.0 | 07/97 | ND | 03/98 | | | | | | AS | 0.4 | 07/96 | 0.4 | 07/96 | | | 03 | MUNICIPAL | ACTIVE | PCE | 25.0 | 08/11 | 16.0 | 05/20 | VULNERABLE | | | | | TCE | 2.7 | 05/04 | 1.1 | 05/20 | (VOC) | | | | | C-1,2-DCE | 0.8 | 05/04 | ND | 05/20 | | | | | | NITRATE (N) | 3.0 | 07/97 | 2.5 | 05/20 | | | | | | CLO4
AS | 4.2
12.9 | 05/04
08/89 | ND
3.5 | 08/19
08/19 | | | | | | CR6 | 3.2 | 05/04 | 3.1 | 08/19 | | | | | | | | | | | | | 04 | MUNICIPAL | DESTROYED | PCE | 0.4 | 01/80
09/87 | ND
1.4 | 11/87
09/87 | | | | | | NITRATE (N)
CLO4 | 1.4
NA | NA | NA | NA | | | 0.5 | | | 205 | 40.0 | 22112 | 40.0 | 05/00 | | | 05 | MUNICIPAL | ACTIVE | PCE
TCE | 40.0
7.0 | 06/13
01/92 | 12.0
0.7 | 05/20
05/20 | VULNERABLE
(VOC,NO3(N),CLO4) | | | | | C-1,2-DCE | 2.0 | 11/01 | ND | 05/20 | (VOC,NOO(N),CLO4) | | | | |
1,1-DCA | 1.1 | 11/01 | ND | 05/20 | | | | | | 1,1-DCE | 0.7 | 11/01 | ND | 05/20 | | | | | | NITRATE (N) | 6.1 | 11/15 | 4.7 | 05/20 | | | | | | CLO4
AS | 6.5
1.5 | 02/01
10/12 | ND
ND | 05/20
11/18 | | | | | | CR6 | 4.7 | 11/14 | 4.7 | 11/15 | | | 06 | MUNICIPAL | INACTIVE | PCE | 13.6 | 03/01 | 3.1 | 05/05 | | | 00 | MONION AL | INACTIVE | TCE | 6.4 | 05/89 | 3.1 | 05/05 | | | | | | C-1,2-DCE | 1.3 | 01/99 | 1.2 | 05/05 | | | | | | 1,1-DCA | 0.8 | 11/01 | 0.6 | 05/05 | | | | | | NITRATE (N) | 6.8 | 06/03 | 5.6 | 05/05 | | | | | | CLO4
AS | 5.9
2.2 | 04/02
09/00 | 5.9
ND | 04/02
08/02 | | | | | | CR6 | 4.1 | 11/00 | 3.4 | 05/01 | | | 07 | MUNICIPAL | INACTIVE | PCE | 6.0 | 09/10 | 6.0 | 09/10 | | | 07 | MUNICIPAL | INACTIVE | NITRATE (N) | 2.9 | 08/89 | 0.6 | 08/10 | | | | | | CLO4 | ND | 08/97 | ND | 08/10 | | | | | | AS | 28.4 | 07/96 | 2.1 | 08/09 | | | | | | CR6 | 5.3 | 02/07 | 5.1 | 01/10 | | | 08 | MUNICIPAL | INACTIVE | PCE | 2.5 | 02/05 | 1.9 | 03/09 | | | | | | NITRATE (N) | 3.8 | 08/05 | ND | 11/08 | | | | | | CLO4 | ND | 08/97 | ND | 11/08 | | | | | | AS | 45.0
6.7 | 03/09 | 45.0
6.7 | 03/09 | | | | | | CR6 | 6.7 | 12/01 | 6.7 | 12/01 | | | 09 | MUNICIPAL | ACTIVE | PCE | 13.0 | 05/15 | 0.7 | 05/20 | VULNERABLE | | | | | TCE | 1.3 | 04/97 | ND | 05/20 | (VOC,AS) | | | | | NITRATE (N)
CLO4 | 4.1
ND | 07/12
08/97 | ND
ND | 05/20
05/20 | | | | | | AS | 15.0 | 06/97 | 8.3 | 03/20 | | | | | | CR6 | 3.4 | 11/00 | 3.1 | 02/19 | | | | | | | | | | | | | | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | | | |-------------|---|-----------|---------------------|----------------|----------------|----------------|----------------|----------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | . ` | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | | | | <u> </u> | | | | 10 | MUNICIPAL | ACTIVE | PCE | 17.0 | 02/12 | 11.0 | 11/19 | VULNERABLE | | | | | TCE | 2.6 | 05/04 | 1.1 | 11/19 | (VOC,NO3(N),CLO4,AS) | | | | | C-1,2-DCE | 0.8 | 05/04 | ND | 11/19 | | | | | | NITRATE (N)
CLO4 | 6.5
4.3 | 05/18
05/04 | 5.9
ND | 11/19
08/19 | | | | | | AS | 6.7 | 07/98 | 3.7 | 08/19 | | | | | | CR6 | 6.6 | 11/00 | 4.8 | 08/19 | | | 12 | MUNICIPAL | ACTIVE | PCE | 85.0 | 05/02 | 41.0 | 05/20 | VULNERABLE | | | | | TCE | 5.4 | 10/95 | 2.2 | 05/20 | (VOC,NO3(N),CLO4) | | | | | 1,1-DCA | 1.3 | 05/12 | 0.6 | 05/20 | | | | | | 1,1-DCE | 0.5 | 05/12 | ND | 05/20 | | | | | | C-1,2-DCE | 1.4 | 05/12
08/07 | 0.5
2.8 | 05/20 | | | | | | NITRATE (N)
CLO4 | 6.1
15.0 | 09/97 | 2.0
ND | 05/20
05/20 | | | | | | AS | ND | 09/97 | ND | 05/20 | | | | | | CR6 | 4.6 | 02/07 | 3.3 | 05/19 | | | 14 | MUNICIPAL | INACTIVE | PCE | 2.2 | 05/02 | 0.7 | 05/06 | | | 14 | MUNICIPAL | INACTIVE | TCE | 2.2 | 11/02 | 1.5 | 05/06 | | | | | | 1,1-DCA | 0.8 | 08/02 | ND | 05/06 | | | | | | C-1,2-DCE | 1.0 | 11/02 | ND | 05/06 | | | | | | NITRATE (N) | 2.3 | 10/06 | 2.3 | 10/06 | | | | | | CLO4 | ND | 08/97 | ND | 05/03 | | | | | | AS | 41.0 | 08/05 | 39.0 | 03/06 | | | | | | CR6 | 1.0 | 11/00 | 1.0 | 05/01 | | | 15 | MUNICIPAL | ACTIVE | PCE | 190.0 | 02/12 | 75.0 | 05/20 | VULNERABLE | | | | | TCE | 3.6 | 03/15 | 3.0 | 05/20 | (VOC,NO3(N)) | | | | | C-1,2-DCE | 0.8 | 08/16 | 0.6 | 05/20 | | | | | | 1,1-DCA | 0.7 | 08/16 | ND | 05/20 | | | | | | NITRATE (N) | 5.2 | 11/08 | 3.6 | 05/20 | | | | | | CLO4 | 2.4 | 07/06 | ND | 05/20 | | | | | | AS | ND | 09/06 | ND | 08/18 | | | | | | CR6 | 2.9 | 02/07 | ND | 08/15 | | | FERN | MUNICIPAL | ACTIVE | PCE | 12.0 | 08/10 | 1.3 | 05/20 | VULNERABLE | | | | | TCE | 2.8 | 10/16 | 0.8 | 05/20 | (VOC,AS) | | | | | C-1,2-DCE | 0.7 | 03/04 | ND | 05/20 | | | | | | NITRATE (N)
CLO4 | 1.5
2.0 | 03/04
08/97 | ND
ND | 08/19
08/19 | | | | | | AS | 16.0 | 06/97 | 15.0 | 08/19 | | | | | | CR6 | 1.5 | 11/00 | ND | 08/19 | | | MUNOZ, RALP | ч | | | | | | | | | MUNOZ | | ACTIVE | VOCS | NIA | NIA | NIA | NIA | | | MUNUZ | IRRIGATION | ACTIVE | NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | NAMIMATSU F | ARMS | | | | | | | | | | | | | | | | | | | NA | IRRIGATION | INACTIVE | VOCS
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | OWI BOCK BI | RODUCTS COMPAN | .iv | | | | | | | | OWL ROCK PI | RODUCTS COMPA | N 1 | | | | | | | | NA | INDUSTRIAL | INACTIVE | VOCS | ND | 05/87 | ND | 10/09 | | | | | | NITRATE (N)
CLO4 | 2.0
NA | 08/89
NA | ND
NA | 10/09
NA | | | | | | CLO4 | INA | INA | INA | INA | | | NA | INDUSTRIAL | INACTIVE | VOCS | NA | NA | ND | 10/17 | | | | | | NITRATE (N) | NA | NA | ND | 10/17 | | | | | | CLO4 | NA | NA | NA | NA | | | NA | INDUSTRIAL | INACTIVE | VOCS | ND | 10/02 | ND | 11/04 | | | | | | NITRATE (N) | NA | NA | NA | 11/04 | | | | | | CLO4 | NA | NA | NA | NA | | | PICO COUNTY | WATER DISTRICT | | | | | | | | | NA | MUNICIPAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | POLOPOLUS I | ET AL. | | | | | | | | | | | INIACTIVE | DOE | 220.0 | 10/00 | 270.0 | 02/02 | | | 01 | IRRIGATION | INACTIVE | PCE
TCE | 330.0
498.9 | 10/96
09/92 | 270.0
180.0 | 03/98
03/98 | | | | | | - • | | | | . | | | | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | | | |-------------|---|-------------|---------------------|-------------|----------------|-------------|----------------|--------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | MOST R | | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | 11 DCA | 22.0 | 02/09 | 22.0 | 03/98 | | | | | | 1,1-DCA
1,2-DCA | 1.2 | 03/98
06/96 | 0.9 | 03/98 | | | | | | 1,1-DCE | 115.3 | 09/92 | 22.0 | 03/98 | | | | | | T-1,2-DCE | 1.5 | 06/87 | ND | 03/98 | | | | | | 1,1,1-TCA | 53.0 | 09/92 | 12.0 | 03/98 | | | | | | CTC | 0.8 | 06/96 | 0.6 | 03/98 | | | | | | NITRATE (N) | 11.5 | 07/91 | 6.7 | 03/98 | | | | | | CLO4 | ND | 03/98 | ND | 03/98 | | | PROGRESSIVE | E BUDDHIST ASSO | CIATION | | | | | | | | NA | IRRIGATION | ACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | RICHWOOD M | UTUAL WATER CO | DMPANY | | | | | | | | NORTH 2 | MUNICIPAL | DESTROYED | PCE | 93.0 | 05/83 | 4.0 | 12/93 | | | | | | TCE | 3.0 | 03/81 | ND | 05/92 | | | | | | CTC | 0.2 | 10/80 | ND | 05/92 | | | | | | NITRATE (N) | 5.6
NA | 02/84 | 4.5
NA | 06/99
NA | | | | | | CLO4
AS | NA
ND | NA
06/90 | NA
ND | NA
09/92 | | | COUTUA | MUNICIPAL | DECTROVER | | | | | | | | SOUTH 1 | MUNICIPAL | DESTROYED | PCE
TCE | 96.0
0.7 | 05/83
12/82 | 3.4
ND | 12/93
05/92 | | | | | | NITRATE (N) | 6.5 | 06/99 | 6.5 | 06/99 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 06/90 | ND | 09/92 | | | ROY, RUTH | | | | | | | | | | NA | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | 10. | DOMEOTIO | 110/10/11/2 | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | RURBAN HOM | ES MUTUAL WATE | ER COMPANY | | | | | | | | NORTH 1 | MUNICIPAL | INACTIVE | PCE | 16.0 | 11/80 | ND | 09/18 | VULNERABLE | | | | | 1,1-DCE | 0.9 | 09/08 | ND | 09/18 | (VOC,NO3(N)) | | | | | FREON 11 | 13.3 | 05/04 | ND | 09/18 | | | | | | FREON 113 | 64.4 | 05/04 | ND | 09/18 | | | | | | NITRATE (N) | 6.8 | 03/01 | 2.4 | 09/18 | | | | | | CLO4
AS | ND
3.0 | 09/97 | ND
2.6 | 09/18
09/18 | | | | | | CR6 | 1.0 | 08/03
06/01 | 2.6
ND | 09/18 | | | COLUTION | MUNICIPAL | INIA OTE / | | | | | | | | SOUTH 2 | MUNICIPAL | INACTIVE | PCE
1.1.DCE | 24.3 | 02/81
10/08 | ND | 03/13 | | | | | | 1,1-DCE
FREON 11 | 1.7
14.1 | 10/08
05/04 | ND
ND | 03/13
03/13 | | | | | | FREON 113 | 54.2 | 05/04 | ND | 03/13 | | | | | | NITRATE (N) | 8.6 | 03/07 | 4.7 | 03/13 | | | | | | CLO4 | ND | 09/97 | ND | 06/11 | | | | | | AS | 3.0 | 08/03 | 2.1 | 09/12 | | | | | | CR6 | 1.0 | 06/01 | ND | 12/01 | | | SAN GABRIEL | COUNTRY CLUB | | | | | | | | | 01 | IRRIGATION | ACTIVE | VOCS | ND | 05/85 | ND | 12/19 | | | | | | NITRATE (N) | 15.1 | 07/96 | 7.0 | 12/19 | | | | | | CLO4 | 8.5 | 07/97 | 5.4 | 08/05 | | | 02 | IRRIGATION | ACTIVE | VOCS | ND | 05/87 | ND | 12/19 | | | | | | NITRATE (N) | 12.0 | 12/19 | 12.0 | 12/19 | | | | | | CLO4 | 1.4 | 12/97 | 1.1 | 08/05 | | | | COUNTY WATER | | | | | | | | | 05 BRA | MUNICIPAL | INACTIVE | TCE | 0.9 | 01/97 | ND | 03/01 | | | | | | PCE | 1.9 | 02/99 | 1.0 | 03/01 | | | | | | NITRATE (N)
CLO4 | 19.0
ND | 08/89
09/97 | 16.0
ND | 03/01
09/00 | | | | | | AS | 0.6 | 08/96 | ND
ND | 08/98 | | | | | | CR6 | 7.0 | 12/00 | 7.0 | 12/00 | | | 06 004 | MUNICIDAL | DESTROYER | V000 | ND | 02/00 | ND | 02/00 | | | 06 BRA | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | ND
24.6 | 02/99 | ND
13.0 | 02/99
03/00 | | | | | | CLO4 | 3.0 | 08/72
02/99 | 13.0
3.0 | 03/00 | | | | | | OLO-1 | 0.0 | 32,33 | 0.0 | 02/00 | | | | | 1 | | | | | | 71 | |-------------|----------------------|----------------|---------------------------|-------------|----------------|------------|----------------|-------------------------------------| | | | | CONCENTRA | | | | | | | WELL NAME | USAGE | STATUS | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | REMARKS | | | | II. | | 17.202 | | 17.202 | | ll | | 07 | MUNICIPAL | DESTROYED | VOCS | ND | 09/89 | ND | 10/11 | | | | | | NITRATE (N)
CLO4 | 10.8
5.6 | 03/03
03/03 | 7.9
ND | 10/11
10/11 | | | | | | AS | 1.3 | 08/96 | ND | 07/09 | | | | | | CR6 | 4.5 | 07/01 | 4.5 | 07/09 | | | | | 11.14 OT 11 /F | | | 0.1/0.0 | | 00/04 | | | 80 | MUNICIPAL | INACTIVE | VOCS
NITRATE (N) | ND
17.2 | 01/90
01/82 | ND
5.3 | 03/91
08/93 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 06/78 | ND | 08/90 | | | 09 |
MUNICIPAL | ACTIVE | PCE | 3.9 | 07/18 | 3.3 | 04/20 | VULNERABLE | | 00 | WOTTON 71E | NOTIVE | NITRATE (N) | 11.5 | 03/03 | 5.5 | 04/20 | (VOC,NO3(N)) | | | | | CLO4 | ND | 09/97 | ND | 07/19 | (/ / / / / / / / / / / / / / / / / | | | | | AS | ND | 09/89 | ND | 07/15 | | | | | | CR6 | 8.1 | 12/02 | 7.8 | 07/15 | | | 10 | MUNICIPAL | INACTIVE | PCE | 18.0 | 08/93 | 1.9 | 11/98 | | | | | | NITRATE (N) | 11.3 | 05/89 | 7.0 | 11/98 | | | | | | CLO4 | 5.5 | 11/98 | 5.5 | 11/98 | | | | | | AS | ND | 06/78 | ND | 11/98 | | | 11 | MUNICIPAL | ACTIVE | PCE | 5.0 | 01/19 | 4.0 | 07/19 | VULNERABLE | | | | | TCE | 0.7 | 10/18 | ND | 07/19 | (VOC,NO3(N)) | | | | | NITRATE (N)
CLO4 | 14.0
ND | 01/18
09/97 | 14.0
ND | 07/19
07/19 | | | | | | AS | ND | 06/78 | ND | 07/19 | | | | | | CR6 | 25.0 | 12/00 | 6.9 | 07/19 | | | 12 | MUNICIPAL | ACTIVE | TCE | 0.8 | 09/02 | ND | 07/19 | VULNERABLE | | 12 | WONION AL | AOTIVE | PCE | 1.2 | 10/18 | ND | 04/20 | (AS) | | | | | NITRATE (N) | 2.0 | 06/16 | ND | 10/19 | ` , | | | | | CLO4 | ND | 09/97 | ND | 07/19 | | | | | | AS | 7.0 | 10/96 | 4.5 | 10/17 | | | | | | CR6 | 7.6 | 07/01 | 6.2 | 10/17 | | | 14 | MUNICIPAL | ACTIVE | PCE | 0.6 | 09/02 | ND | 07/19 | | | | | | NITRATE (N) | 4.4 | 02/17 | 1.1 | 07/19 | | | | | | CLO4
AS | ND
3.1 | 09/97
07/08 | ND
2.5 | 07/19
07/17 | | | | | | CR6 | 4.6 | 07/01 | 2.7 | 07/17 | | | 15 | MUNICIPAL | ACTIVE | PCE | 3.4 | 04/19 | ND | 04/20 | VULNERABLE | | 10 | WOTTON 71E | NOTIVE | NITRATE (N) | 7.5 | 03/17 | 0.4 | 04/20 | (NO3(N)) | | | | | CLO4 | ND | 12/14 | ND | 10/19 | · · · // | | | | | AS | ND | 06/14 | 2.7 | 04/20 | | | | | | CR6 | 3.6 | 11/14 | 1.7 | 04/20 | | | SAN GABRIEL | VALLEY WATER | COMPANY | | | | | | | | 1B | MUNICIPAL | ACTIVE | PCE | 46.0 | 04/81 | ND | 05/20 | VULNERABLE | | .5 | | 7.01.12 | TCE | 1.8 | 02/80 | ND | 08/19 | (VOC,NO3(N)) | | | | | FREON 113 | 22.3 | 08/08 | ND | 08/19 | | | | | | NITRATE (N) | 5.1 | 05/08 | 2.6 | 05/20 | | | | | | CLO4
AS | ND
2.9 | 08/97
07/96 | ND
2.1 | 08/19
08/17 | | | | | | CR6 | 1.0 | 05/14 | ND | 08/17 | | | 10 | A 41 IN II O I D A 1 | DESTROYER | V000 | ND | 07/00 | ND | 00/47 | | | 1C | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | ND
1.9 | 07/98
08/11 | ND
1.1 | 08/17
08/17 | | | | | | CLO4 | ND | 10/99 | ND | 08/17 | | | | | | AS | 2.6 | 09/94 | 2.1 | 08/15 | | | | | | CR6 | 1.0 | 05/01 | ND | 08/15 | | | 1D | MUNICIPAL | ACTIVE | VOCS | ND | 07/98 | ND | 08/19 | | | | | | NITRATE (N) | 1.1 | 07/89 | 8.0 | 08/19 | | | | | | CLO4 | ND | 08/97 | ND | 08/19 | | | | | | AS
CR6 | 2.0
1.0 | 11/06
05/01 | ND
ND | 11/18
11/15 | | | 4= | MINICIPA | 4.07" (5 | | | | | | \(\(\)\(\)\(\) | | 1E | MUNICIPAL | ACTIVE | PCE
NITRATE (N) | 0.7
1.1 | 09/02
11/16 | ND
1.0 | 05/20
11/19 | VULNERABLE
(CLO4) | | | | | CLO4 | 5.0 | 06/00 | ND | 08/19 | (0207) | | | | | AS | 2.7 | 11/08 | 2.0 | 11/17 | | | | | | CR6 | 1.0 | 05/01 | ND | 11/17 | | | 2C | MUNICIPAL | DESTROYED | TCE | 15.2 | 12/80 | ND | 11/05 | | | | | | PCE | 3.0 | 10/87 | ND | 11/05 | | | | | | NITRATE (N) | 3.7 | 08/04 | 1.2 | 08/05 | | | | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | 1 | | |--|---|--|---------------------------|--------------|----------------|-------------|----------------|---------------------| | WELL NAME | USAGE | STATUS | | | CIC HIGH | | RECENT | REMARKS | | WELL NAME | USAGE | 314103 | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | REWARKS | | <u> </u> | | <u> </u> | <u> </u> | | | | | | | | | | CLO4 | ND | 08/97 | ND | 02/03 | | | | | | AS | ND | 07/89 | ND | 08/05 | | | 2D | MUNICIPAL | ACTIVE | TCE | 25.0 | 12/80 | ND | 05/20 | VULNERABLE | | | | | PCE | 0.9 | 03/17 | ND | 05/20 | (VOC) | | | | | NITRATE (N) | 1.9 | 08/15 | 1.3 | 08/19 | | | | | | CLO4 | ND | 08/97 | ND | 08/19 | | | | | | AS
CR6 | ND
3.2 | 07/89
08/17 | ND
3.2 | 08/17
08/17 | | | | | | CINO | 5.2 | 00/17 | 5.2 | 00/17 | | | 2E | MUNICIPAL | ACTIVE | TCE | 18.0 | 01/80 | ND | 05/20 | VULNERABLE | | | | | PCE | 3.6 | 09/16 | ND | 05/20 | (VOC) | | | | | NITRATE (N) | 4.5
ND | 08/15 | 2.4
ND | 08/19
08/19 | | | | | | CLO4
AS | ND | 08/97
07/89 | ND | 08/19 | | | | | | CR6 | 3.8 | 08/17 | 3.8 | 08/17 | | | | | | | | | | | | | 2F | MUNICIPAL | ACTIVE | TCE | 1.3 | 02/15 | ND | 05/20 | | | | | | PCE
NITRATE (N) | 1.4
2.5 | 11/18
08/15 | ND
1.2 | 05/20
08/19 | | | | | | CLO4 | ND | 09/06 | ND | 08/19 | | | | | | AS | 0.7 | 03/06 | ND | 08/18 | | | | | | CR6 | 3.1 | 08/15 | 3.1 | 08/15 | | | | | | | | | | | | | 8A | MUNICIPAL | INACTIVE | PCE
NITRATE (N) | 0.6
9.1 | 11/87
02/97 | ND
9.1 | 02/97
02/97 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 07/89 | ND | 07/89 | | | | | | | | | | | | | 8B | MUNICIPAL | ACTIVE | PCE | 220.0 | 02/09 | 98.0 | 05/20 | VULNERABLE | | | | | TCE
NITRATE (N) | 1.2
5.2 | 11/15
08/08 | 0.8
4.2 | 05/20
08/19 | (VOC,NO3(N)) | | | | | CLO4 | 3.0 | 08/97 | 4.2
ND | 08/19 | | | | | | AS | 0.4 | 07/96 | ND | 08/18 | | | | | | CR6 | 2.9 | 11/02 | 2.4 | 08/15 | | | | | 4.OT!\ /F | 505 | 470.0 | 05/00 | | 05/00 | | | 8C | MUNICIPAL | ACTIVE | PCE
TCE | 170.0
0.8 | 05/09
05/09 | 80.0
0.7 | 05/20
05/20 | VULNERABLE | | | | | NITRATE (N) | 4.5 | 05/09 | 2.2 | 08/19 | (VOC,NO3(N)) | | | | | CLO4 | 4.0 | 03/08 | ND | 08/19 | | | | | | AS | 0.5 | 07/96 | ND | 08/18 | | | | | | CR6 | 3.4 | 08/15 | 3.4 | 08/15 | | | 8D | MUNICIPAL | ACTIVE | PCE | 180.0 | 11/18 | 150.0 | 05/20 | VULNERABLE | | OD | WONTON AL | AOTIVE | TCE | 1.1 | 11/18 | 0.8 | 05/20 | (VOC,NO3(N),AS) | | | | | C-1,2 DCE | 0.8 | 05/04 | ND | 05/20 | (, (), | | | | | CTC | 0.6 | 06/88 | ND | 05/20 | | | | | | NITRATE (N) | 6.6 | 06/09 | 4.1
ND | 05/20 | | | | | | CLO4
AS | 2.3
29.5 | 03/08
09/94 | ND
ND | 08/19
05/20 | | | | | | CR6 | 3.3 | 11/00 | 3.0 | 05/20 | | | | | | | | | | | | | 8E | MUNICIPAL | ACTIVE | PCE | 10.0 | 03/03 | ND | 11/19 | VULNERABLE | | | | | NITRATE (N)
CLO4 | 1.6
ND | 07/01
08/97 | ND
ND | 08/19
08/19 | (VOC) | | | | | AS | 2.8 | 08/95 | ND | 08/19 | | | | | | CR6 | 4.8 | 08/16 | 4.5 | 08/19 | | | | | | | | | | | | | 8F | MUNICIPAL | ACTIVE | VOCS | ND | 10/98 | ND | 08/19 | | | | | | NITRATE (N)
CLO4 | 4.3
ND | 11/10
01/99 | 0.7
ND | 11/19
08/19 | | | | | | AS | 2.9 | 11/19 | 2.9 | 11/19 | | | | | | CR6 | 8.4 | 11/19 | 8.4 | 11/19 | | | | | | | | | | | | | 11A | MUNICIPAL | ACTIVE | PCE
NITRATE (N) | 1.5
3.3 | 02/08 | ND | 05/20 | | | | | | CLO4 | S.S
ND | 07/89
08/97 | 1.2
ND | 08/19
08/19 | | | | | | AS | 3.9 | 07/96 | 2.8 | 08/18 | | | | | | CR6 | 6.8 | 05/01 | 5.4 | 08/15 | | | | | | D | 4== = | 0.47 | | 0=: | | | 11B | MUNICIPAL | ACTIVE | PCE
TCE | 17.8
4.0 | 04/90
04/90 | ND
ND | 05/20
05/20 | VULNERABLE
(VOC) | | | | | 1,1-DCE | 0.2 | 04/90 | ND | 11/19 | (٧٥٥) | | | | | C-1,2-DCE | 3.0 | 04/89 | ND | 11/19 | | | | | | NITRATE (N) | 4.3 | 11/18 | 1.2 | 11/19 | | | | | | CLO4 | ND | 06/97 | ND | 11/19 | | | | | | AS
CR6 | 4.8
6.1 | 09/94
11/00 | 2.1
2.4 | 11/18
12/15 | | | | | | 0.10 | 0.1 | . 1,50 | 4.7 | .2,10 | | | | | | CONCENTRA | TION (NITRAT | E IN MG/L. O | OTHERS IN U | JG/L) | | |-----------|-----------|-----------|---------------------|--------------|----------------|-------------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | IC HIGH | | RECENT | REMARKS | | | 00.10= | | OF CONCERN | VALUE | DATE | VALUE | DATE | 1 | | | | | H | | | | | | | 11C | MUNICIPAL | ACTIVE | PCE | 4.1 | 12/91 | ND | 05/20 | VULNERABLE | | | | | TCE | 0.6 | 12/91 | ND | 08/19 | (VOC,AS) | | | | | 1,1-DCE | 1.1 | 08/08 | ND | 08/19 | | | | | | C-1,2-DCE | 2.5 | 03/92 | ND | 05/20 | | | | | | NITRATE (N) | 2.7 | 08/06 | 1.2 | 08/19 | | | | | | CLO4 | ND | 08/97 | ND | 08/19 | | | | | | AS | 7.5 | 07/96 | 2.6 | 08/18 | | | | | | CR6 | 4.8 | 05/01 | 1.0 | 08/15 | | | 11D | MUNICIPAL | ACTIVE | vocs | ND | 05/19 | ND | 05/19 | | | 110 | MONION AL | ACTIVE | NITRATE (N) | 0.4 | 11/19 | 0.4 | 11/19 | | | | | | CLO4 | ND | 05/19 | ND | 05/19 | | | | | | 0204 | 110 | 00/10 | ND | 00/10 | | | | | | | | | | | | | B1 | MUNICIPAL | INACTIVE | TCE | 12.0 | 04/85 | ND | 08/06 | | | | | | PCE | 7.3 | 05/88 | ND | 08/06 | | | | | | C-1,2-DCE | 7.2 | 12/92 | ND | 08/06 | | | | | | 1,1-DCE | 2.1 | 08/89 | ND | 08/06 | | | | | | NITRATE (N) | 3.9 | 02/87 | 8.0 | 03/05 | | | | | | CLO4 | ND | 08/97 | ND | 02/03 | | | | | | AS | 2.8 | 07/96 | 2.3 | 02/05 | | | B2 | MUNICIPAL | INACTIVE | TCE | 17.0 | 03/80 | ND | 11/98 | | | DZ. | MUNICIPAL | INACTIVE | PCE | 15.8 | 06/80 | 0.7 | 11/98 | | | | | | CTC | 1.7 | 05/82 | ND | 11/98 | | | | | | 1,2-DCA | 7.7 | 07/82 | ND | 11/98 | | | | | | 1,1,1-TCA | 7.6 | 07/82 | ND | 11/98 | | | | | | C-1,2-DCE | 2.6 | 08/93 | ND | 11/98 | | | | | | NITRATE (N) | 2.0 | 11/98 | 2.0 | 11/98 | | | | | | CLO4 | ND | 11/98 | ND | 11/98 | | | | | | | | | | | | | B4B | MUNICIPAL | INACTIVE | TCE | 25.2 | 02/08 | 25.2 | 02/08 | | | | | | PCE | 43.0 | 11/07 | 5.8 | 02/08 | | | | | | CTC | 10.0 | 11/03 | 6.6 | 02/08 | | | | | | 1,2-DCA | 1.0 | 09/07 | 0.5 | 02/08 | | | | | | 1,1-DCE | 3.2 | 11/07 | 2.3 | 02/08 | | | | | | C-1,2-DCE | 4.2 | 11/07 | 2.7 | 02/08 | | | | | | NITRATE (N) | 3.0 | 11/07 | 3.0 | 11/07 | | | | | | CLO4 | 24.5 | 04/08 | 24.5 | 04/08 | | | | | | AS | 6.3 | 08/95 | 2.0 | 02/08 | | | | | | CR6 | 4.1 | 05/01 | 4.1 | 05/01 | | | B4C | MUNICIPAL | INACTIVE | СТС | 22.3 | 02/01 | 14.0 | 08/01 | | | D4C | MUNICIPAL | INACTIVE | TCE | 15.5 | 02/01 | 9.3 | 08/01 | | | | | | PCE | 3.4 | 02/01 | 2.2 | 08/01 | | | | | | 1,1-DCE | 2.3 | 09/01 | 2.3 | 09/01 | | | | | | C-1,2-DCE | 2.4 | 09/01 | 2.4 | 09/01 | | | | | | NITRATE (N) | 3.2 | 02/01 | 3.2 |
02/01 | | | | | | CLO4 | 6.0 | 06/00 | ND | 07/00 | | | | | | AS | 5.8 | 08/95 | ND | 03/99 | | | | | | CR6 | 3.3 | 05/01 | 3.3 | 05/01 | | | | | | | | | | | | | B5A | MUNICIPAL | INACTIVE | PCE | 17.5 | 03/91 | ND | 11/05 | | | | | | TCE | 5.2 | 03/98 | ND | 11/05 | | | | | | 1,1-DCE | 2.5 | 03/85 | ND | 08/05 | | | | | | CTC
1,1,1-TCA | 1.1 | 12/91 | ND | 11/05 | | | | | | NITRATE (N) | 3.7
10.4 | 03/90
07/96 | ND
5.7 | 08/05
11/05 | | | | | | CLO4 | 14.0 | 06/97 | 4.0 | 08/05 | | | | | | AS | 2.8 | 06/97 | 2.0 | 08/05 | | | | | | CR6 | 6.4 | 11/00 | 6.2 | 05/03 | | | | | | ONO | 0.4 | 11/00 | 0.2 | 03/01 | | | B5B | MUNICIPAL | ACTIVE | TCE | 5.8 | 02/97 | 3.0 | 05/20 | VULNERABLE | | | | | PCE | 6.5 | 08/18 | 2.6 | 05/20 | (VOC,NO3(N),CLO4) | | | | | CTC | 2.3 | 02/85 | ND | 05/20 | | | | | | 1,1-DCE | 1.1 | 11/19 | 0.7 | 05/20 | | | | | | 1,2-DCA | 0.6 | 09/07 | ND | 05/20 | | | | | | NITRATE (N) | 12.7 | 12/12 | 9.7 | 05/20 | | | | | | CLO4 | 12.0 | 06/97 | 6.2 | 05/20 | | | | | | AS | 2.4 | 08/16 | 2.2 | 08/19 | | | | | | CR6 | 7.1 | 08/16 | 6.6 | 08/19 | | | DEC | MUNICIDAL | INIACTIVE | V000 | NID | 05/00 | NID | 00/07 | | | B5C | MUNICIPAL | INACTIVE | VOCS
NITRATE (N) | ND
0.9 | 05/89
05/07 | ND
0.9 | 08/07
05/07 | | | | | | CLO4 | 0.9
ND | 06/97 | ND | 03/07 | | | | | | AS | 5.8 | 08/95 | 2.0 | 08/07 | | | | | | CR6 | 5.8 | 05/01 | 5.8 | 05/01 | | | | | | 01.0 | 0.0 | 30/01 | 0.0 | 30/01 | | | B5D | MUNICIPAL | ACTIVE | CTC | 1.2 | 11/15 | 1.0 | 05/20 | VULNERABLE | | | | | | | | | | | | | | 1 | CONCENTRA | 1 | | | | | |-----------|-----------|------------|----------------------|------------|----------------|------------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | WELL NAME | GOAGE | GIAIGG | OF CONCERN | VALUE | DATE | VALUE | DATE | KLWARIO | | | | | AUTD 4 TE (AL) | | 00/40 | | 00/40 | (1/00 N00(N)) | | | | | NITRATE (N)
CLO4 | 7.4
ND | 08/18
12/97 | 0.7
ND | 08/19
08/19 | (VOC,NO3(N)) | | | | | AS | 2.4 | 09/10 | 2.4 | 08/19 | | | | | | CR6 | 4.6 | 05/10 | 3.1 | 08/19 | | | | | | 0.10 | | 00/01 | 0 | 00/10 | | | B5E | MUNICIPAL | ACTIVE | TCE | 27.0 | 11/19 | 21.0 | 05/20 | VULNERABLE | | | | | PCE | 4.8 | 05/20 | 4.8 | 05/20 | (VOC,NO3(N),CLO4) | | | | | CTC | 5.2 | 05/07 | 2.2 | 05/20 | | | | | | 1,2-DCA
1,1-DCE | 1.4
1.6 | 11/19
11/19 | 1.2
1.3 | 05/20
05/20 | | | | | | C-1,2-DCE | 1.6 | 10/16 | 1.3 | 05/20 | | | | | | NITRATE (N) | 5.9 | 08/15 | 4.8 | 05/20 | | | | | | CLO4 | 22.0 | 05/20 | 22.0 | 05/20 | | | | | | AS | 3.0 | 08/07 | 2.7 | 08/19 | | | | | | CR6 | 7.0 | 02/09 | 6.7 | 08/19 | | | B6B | MUNICIPAL | DESTROYED | TCE | 111.0 | 02/85 | 35.8 | 09/92 | | | БОБ | MONION AL | DESTROTED | PCE | 6.4 | 10/81 | 4.3 | 09/92 | | | | | | CTC | 17.0 | 02/85 | 5.0 | 09/92 | | | | | | 1,1-DCE | 1.1 | 04/85 | 0.5 | 09/92 | | | | | | 1,1-DCA | 0.6 | 09/92 | 0.6 | 09/92 | | | | | | 1,2-DCA | 8.3 | 09/92 | 8.3 | 09/92 | | | | | | NITRATE (N)
CLO4 | 19.3
NA | 02/91
NA | 12.9
NA | 09/92
NA | | | | | | CLO4 | INA | INA | INA | INA | | | B6C | MUNICIPAL | INACTIVE | TCE | 84.0 | 03/88 | 1.3 | 08/16 | VULNERABLE | | | | | PCE | 12.0 | 11/81 | ND | 08/16 | (VOC,NO3(N),CLO4) | | | | | CTC | 13.0 | 02/85 | ND | 08/16 | | | | | | 1,2-DCA | 9.0 | 05/88 | ND | 08/16 | | | | | | 1,1-DCE
C-1,2-DCE | 1.5
6.2 | 06/94
04/88 | ND
ND | 08/16
08/16 | | | | | | NITRATE (N) | 22.0 | 08/16 | 22.0 | 08/16 | | | | | | CLO4 | 370.0 | 11/05 | 18.0 | 08/16 | | | | | | AS | 3.7 | 07/96 | 2.2 | 08/14 | | | | | | CR6 | 3.9 | 03/10 | 2.3 | 10/14 | | | B6D | MUNICIPAL | INACTIVE | TCE | 140.0 | 05/11 | 45.0 | 05/17 | VULNERABLE | | | | | PCE | 7.1 | 05/09 | 2.3 | 05/17 | (VOC,NO3(N),CLO4) | | | | | CTC | 14.0 | 05/11 | 4.9 | 05/17 | | | | | | 1,1-DCA | 1.1 | 05/09 | ND | 05/17 | | | | | | 1,2-DCA
1,1-DCE | 3.7
1.0 | 05/11
08/08 | 1.1
ND | 05/17
05/17 | | | | | | C-1,2-DCE | 2.8 | 05/09 | 0.9 | 05/17 | | | | | | NITRATE (N) | 6.6 | 05/15 | 5.5 | 08/17 | | | | | | CLO4 | 390.0 | 11/05 | 23.0 | 05/17 | | | | | | AS | 3.1 | 07/96 | 2.4 | 08/17 | | | | | | CR6 | 2.9 | 10/14 | 2.6 | 08/17 | | | B7B | MUNICIPAL | DESTROYED | TCE | 2.4 | 03/85 | 2.4 | 03/85 | | | | | | PCE | 1.4 | 03/85 | 1.2 | 03/85 | | | | | | NITRATE (N) | 2.8 | 08/87 | 2.8 | 08/87 | | | | | | CLO4 | NA | NA | NA | NA | | | B7C | MUNICIPAL | DESTROYED | TCE | 15.0 | 11/10 | 4.8 | 11/14 | | | 2.0 | | 5201110125 | PCE | 35.0 | 03/03 | 15.0 | 11/14 | | | | | | 1,1-DCE | 6.7 | 12/89 | 2.9 | 11/14 | | | | | | C-1,2-DCE | 4.7 | 12/93 | 0.9 | 11/14 | | | | | | CTC | 0.6 | 02/89 | ND | 08/14 | | | | | | NITRATE (N)
CLO4 | 6.4
ND | 08/92
06/97 | 3.4
ND | 08/14
08/14 | | | | | | AS | 2.0 | 08/05 | ND | 08/14 | | | | | | CR6 | 5.0 | 05/01 | 3.5 | 05/11 | | | B7D | MUNICIPAL | DESTROYED | PCE | 5.3 | 07/87 | 3.5 | 09/87 | | | | | | TCE | 3.9 | 07/87 | 3.3 | 09/87 | | | | | | 1,1-DCE | 5.3 | 05/87 | 5.0 | 09/87 | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | B7E | MUNICIPAL | ACTIVE | PCE | 1.1 | 08/15 | ND | 05/20 | | | | | | NITRATE (N) | 3.6 | 11/08 | 0.7 | 05/20 | | | | | | CLO4
AS | ND
4.6 | 06/97
03/97 | ND | 08/19
05/18 | | | | | | CR6 | 4.6
4.6 | 03/97
05/18 | 2.9
4.6 | 05/18 | | | | | - | | | | | | | | B8 | MUNICIPAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | OLO4 | INC | INA | INA | INC | | | | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | | | |-----------|---|-----------|------------------------|-------------|----------------|------------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | IC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | - | | | | | | | | | | - | | B9 | MUNICIPAL | INACTIVE | TCE | 37.0 | 02/85 | 34.7 | 01/87 | | | | | | PCE | 4.9 | 01/87 | 4.9 | 01/87 | | | | | | CTC | 8.3 | 01/87 | 8.3 | 01/87 | | | | | | NITRATE (N) | 19.1 | 02/86 | 15.4 | 02/87 | | | | | | CLO4 | NA | NA | NA | NA | | | B9B | MUNICIPAL | ACTIVE | VOCS | ND | 06/87 | ND | 08/19 | | | | | | NITRATE (N) | 3.4 | 08/19 | 3.4 | 08/19 | | | | | | CLO4 | 1.2 | 03/08 | ND | 08/18 | | | | | | AS | 3.5 | 08/95 | ND | 08/19 | | | | | | CR6 | 9.8 | 05/01 | 8.3 | 08/19 | | | B11A | MUNICIPAL | DESTROYED | TCE | 9.8 | 08/01 | 5.8 | 08/04 | | | | | | PCE | 21.7 | 05/92 | 8.5 | 08/04 | | | | | | 1,1-DCE | 14.0 | 08/01 | 2.8 | 08/04 | | | | | | CTC | 0.9 | 01/88 | ND | 08/04 | | | | | | C-1,2-DCE | 1.5 | 08/01 | 0.6 | 09/04 | | | | | | 1,1-DCA | 1.0 | 08/01 | ND | 08/04 | | | | | | NITRATE (N) | 8.5 | 03/00 | 8.2 | 08/04 | | | | | | CLO4 | 8.0 | 12/97 | ND | 08/04 | | | | | | AS
CR6 | 2.7 | 07/96 | ND
10.0 | 09/02 | | | | | | CRO | 10.0 | 06/01 | 10.0 | 06/01 | | | B11B | MUNICIPAL | ACTIVE | TCE | 33.0 | 11/14 | 9.5 | 02/20 | VULNERABLE | | | | | PCE | 34.5 | 06/92 | 12.0 | 02/20 | (VOC,NO3(N),CLO4) | | | | | CTC | 0.8 | 08/16 | ND | 02/20 | | | | | | 1,1-DCE | 64.0 | 11/14 | 19.0 | 02/20 | | | | | | 1,1-DCA | 4.7 | 11/14 | 1.1 | 02/20 | | | | | | 1,1,1-TCA
C-1,2-DCE | 2.9
5.1 | 10/88
11/14 | ND
1.8 | 08/19
02/20 | | | | | | NITRATE (N) | 10.4 | 11/14 | 4.6 | 02/20 | | | | | | CLO4 | 7.0 | 06/00 | ND | 02/20 | | | | | | AS | 2.2 | 07/96 | ND | 08/14 | | | | | | CR6 | 10.3 | 05/01 | 9.7 | 08/17 | | | B24A | MUNICIDAL | ACTIVE | PCE | 0.5 | 02/10 | ND | 02/20 | | | DZ4A | MUNICIPAL | ACTIVE | NITRATE (N) | 0.5
2.9 | 02/19
02/15 | ND
0.9 | 02/20
02/20 | | | | | | CLO4 | ND | 01/07 | ND | 08/19 | | | | | | AS | 2.4 | 02/16 | 2.1 | 02/19 | | | | | | CR6 | 1.2 | 08/13 | ND | 02/19 | | | B24B | MUNICIPAL | ACTIVE | PCE | 9.2 | 08/18 | 1.3 | 08/19 | VULNERABLE | | 52.5 | | 7.02 | TCE | 0.7 | 05/07 | 0.7 | 02/19 | (VOC) | | | | | NITRATE (N) | 3.4 | 02/14 | 1.5 | 02/19 | () | | | | | CLO4 | ND | 01/07 | ND | 08/19 | | | | | | AS | 2.8 | 02/16 | 2.0 | 02/19 | | | | | | CR6 | 3.3 | 08/13 | 1.1 | 02/19 | | | B25A | MUNICIPAL | ACTIVE | TCE | 110.0 | 11/19 | 71.0 | 05/20 | VULNERABLE | | (SA3-1S) | | | PCE | 37.0 | 11/19 | 37.0 | 05/20 | (VOC,NO3(N),CLO4) | | , , | | | CTC | 5.9 | 10/07 | 2.4 | 05/20 | | | | | | 1,1-DCA | 8.0 | 05/20 | 8.0 | 05/20 | | | | | | 1,2-DCA | 2.0 | 11/19 | 1.6 | 05/20 | | | | | | 1,1-DCE | 8.7 | 11/19 | 5.6 | 05/20 | | | | | | C-1,2-DCE | 6.3 | 08/07 | 5.9 | 05/20 | | | | | | NITRATE (N) | 17.6 | 05/09 | 11.0 | 05/20 | | | | | | CLO4 | 55.0 | 05/19 | 55.0 | 05/20 | | | | | | AS
CR6 | 3.2
3.3 | 03/10
05/19 | 2.1
3.3 | 05/19
05/19 | | | | | | | | | | | | | B25B | MUNICIPAL | ACTIVE | TCE | 43.0 | 11/15 | 31.0 | 05/20 | VULNERABLE | | (SA3-1D) | | | PCE | 13.0 | 08/16 | 5.1 | 05/20 | (VOC,NO3(N),CLO4) | | | | | CTC
1,1-DCA | 10.0
1.2 | 09/04
10/07 | 3.5
ND | 05/20
05/20 | | | | | | 1,2-DCA | 0.7 | 05/17 | 0.7 | 05/20 | | | | | | 1,1-DCE | 4.8 | 08/14 | 1.1 | 05/20 | | | | | | C-1,2-DCE | 3.1 | 08/16 | 1.4 | 05/20 | | | | | | NITRATE (N) | 6.1 | 05/09 | 2.0 | 05/20 | | | | | | CLO4 | 26.0 | 11/18 | 26.0 | 05/20 | | | | | | AS | 3.0 | 03/06 | 2.5 | 05/19 | | | | | | CR6 | 2.4 | 08/06 | 2.4 | 05/19 | | | B26A | MUNICIPAL | ACTIVE | TCE | 57.0 | 05/09 | 19.0 | 05/20 | VULNERABLE | | (SA3-2S) | | | PCE | 6.8 | 12/10 | 1.9 | 05/20 | (VOC,NO3(N),CLO4) | | | | | CTC | 5.4 | 12/10 | 0.8 | 05/20 | | | | | | 1,1-DCA | 0.8 | 05/09 | ND | 05/20 | | | | | | 1,2-DCA | 4.3 | 11/04 | 1.0 | 05/20 | | | | | | 1,1-DCE
C-1,2-DCE | 2.0
3.3 | 12/10
05/06 | ND
0.7 | 05/20
05/20 | | | | | | U-1,2-DUE | 3.3 | 00/00 | 0.7 | 03/20 | | | | | | | | | | | | | | | | CONCENTRA | TION (NITEAT | | | | | |--------------|----------------|-----------|---------------------|--------------|----------------|-------------|----------------|----------------------------| | WELL NAME | USAGE |
STATUS | CONCENTRA | HISTOR | | MOST R | | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | NITRATE (N) | 16.0 | 05/17 | 15.0 | 05/20 | | | | | | CLO4 | 87.0 | 07/06 | 31.0 | 05/20 | | | | | | AS | 3.0 | 03/06 | 2.1 | 02/15 | | | | | | CR6 | 4.3 | 02/18 | 4.3 | 02/18 | | | B26B | MUNICIPAL | ACTIVE | TCE | 140.0 | 11/19 | 61.0 | 05/20 | VULNERABLE | | (SA3-2D) | | | PCE | 3.4 | 11/19 | 3.4 | 05/20 | (VOC,CLO4) | | | | | CTC | 17.0 | 08/16 | 9.7 | 05/20 | | | | | | 1,2-DCA
1,1-DCE | 3.7
0.6 | 11/19
08/16 | 3.1
0.5 | 05/20
05/20 | | | | | | C-1,2-DCE | 1.8 | 08/16 | 1.7 | 05/20 | | | | | | NITRATE (N) | 3.9 | 05/20 | 3.9 | 05/20 | | | | | | CLO4 | 70.0 | 05/20 | 70.0 | 05/20 | | | | | | AS
CR6 | 2.9
3.7 | 11/04
02/06 | 2.2
3.5 | 02/18
02/18 | | | E)4/4 E | MUNICIDAL | 4 OT!) (F | | | | | | VIII NEDADI E | | EW4-5 | MUNICIPAL | ACTIVE | PCE
TCE | 29.0
4.1 | 10/06
10/06 | 22.0
1.6 | 12/11
12/11 | VULNERABLE
(VOC) | | | | | NITRATE (N) | 3.6 | 12/05 | 2.9 | 11/11 | , | | | | | CLO4 | ND | 12/05 | ND | 11/11 | | | | | | AS | 1.1 | 08/09 | 1.1 | 08/09 | | | EW4-6 | MUNICIPAL | ACTIVE | PCE | 8.1 | 06/06 | 4.7 | 12/11 | | | | | | TCE
NITRATE (N) | 1.1
3.4 | 10/06
11/06 | 0.7
3.4 | 12/11
11/11 | | | | | | CLO4 | ND | 05/06 | ND | 11/11 | | | | | | AS | 1.0 | 08/09 | 1.0 | 08/09 | | | EW4-7 | MUNICIPAL | ACTIVE | PCE | 8.2 | 01/06 | 2.0 | 12/11 | | | | | | TCE | 1.8 | 02/06 | ND | 12/11 | | | | | | NITRATE (N) | 4.1 | 01/06 | 2.9 | 11/11 | | | | | | CLO4
AS | ND
1.8 | 12/05
08/09 | ND
1.8 | 11/11
08/09 | | | 044 | MUNICIDAL | ACTIVE | DOE | 44.0 | 05/00 | 44.0 | 05/00 | VIII NEDADI E | | G4A | MUNICIPAL | ACTIVE | PCE
TCE | 11.0
1.8 | 05/20
11/18 | 11.0
0.8 | 05/20
05/20 | VULNERABLE
(NO3(N),VOC) | | | | | NITRATE (N) | 6.3 | 05/14 | 4.9 | 05/20 | | | | | | CLO4 | 1.0 | 03/08 | ND | 02/20 | | | | | | AS
CR6 | 0.5
4.4 | 07/96
11/00 | ND
3.7 | 11/18
11/15 | | | SIERRA LA VE | RNE COUNTRY CL | LUB | | | | | | | | 01 | IRRIGATION | INACTIVE | VOCS | ND | 08/96 | ND | 10/07 | | | | | | NITRATE (N) | 2.4 | 05/99 | ND | 10/07 | | | | | | CLO4 | ND | 03/98 | ND | 03/98 | | | 02 | IRRIGATION | INACTIVE | VOCS | ND | 10/08 | ND | 10/10 | | | | | | NITRATE (N) | 3.9 | 08/96 | ND | 10/10 | | | | | | CLO4 | 28.0 | 03/98 | ND | 04/98 | | | SLOAN RANCH | HES | | | | | | | | | 01 | IRRIGATION | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | | | | | | | 02 | IRRIGATION | INACTIVE | VOCS | NA
NA | NA | NA | NA
NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA | | | SONOCO PRO | DUCTS COMPANY | | | | | | | | | | | | | | | | | | | 01 | INDUSTRIAL | INACTIVE | TCE
PCE | 28.6
8.5 | 12/99
12/99 | 1,9
3.4 | 10/17
10/17 | | | | | | 1,1-DCE | 113.0 | 12/99 | 4.3 | 10/17 | | | | | | 1,1,1-TCA | 71.8 | 12/99 | ND | 10/17 | | | | | | CTC
NITRATE (N) | 1.2
16.4 | 07/96
12/05 | ND
14.0 | 10/17
10/17 | | | | | | CLO4 | ND | 06/98 | ND | 07/04 | | | 02 | INDUSTRIAL | ACTIVE | TCE | 16.0 | 10/03 | 3.3 | 11/19 | | | 02 | HOOTINAL | , WIIVE | PCE | 1.8 | 10/03 | 1.5 | 11/19 | | | | | | 1,1-DCE | 5.9 | 02/98 | 3.7 | 11/19 | | | | | | 1,1,1-TCA
CTC | 2.0
0.9 | 11/87
11/87 | ND
ND | 11/19
11/19 | | | | | | NITRATE (N) | 16.8 | 12/05 | 12.0 | 11/19 | | | | | | CLO4 | 10.0 | 02/98 | ND | 07/04 | | | | | | | | | | | | | | | | CONCENTRAT | ION (NITRAT | E IN MG/L, C | THERS IN L | JG/L) | | |-------------|------------------|-------------|---------------------|-------------|----------------|------------|----------------|----------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | IC HIGH | 1 | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | SOUTH COVIN | IA WATER SERVICE | ≣ | | | | | | | | 1001// 1 | MUNICIDAL | DESTROYED | VOCS | NΙΔ | NIA | NA | NIA | | | 102W-1 | MUNICIPAL | DESTROYED | NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | SOUTHERN CA | ALIFORNIA EDISON | I COMPANY | | | | | | | | 110RH | NON-POTABLE | ACTIVE | VOCS | ND | 08/89 | ND | 02/07 | | | HUNH | NON-FOTABLE | ACTIVE | NITRATE (N) | 2.0 | 02/07 | 2.0 | 02/07 | | | | | | CLO4 | ND | 11/97 | ND | 11/97 | | | | | | AS | ND | 08/98 | ND | 08/98 | | | 1EB86 | NON-POTABLE | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | | | | | | | | 2EB76 | IRRIGATION | DESTROYED | PCE
TCE | 4.3
1.3 | 09/04
09/04 | 4.1
0.7 | 02/07
02/07 | | | | | | NITRATE (N) | 11.6 | 09/04 | 6.0 | 02/07 | | | | | | CLO4 | 2.0 | 11/97 | 2.0 | 11/97 | | | 38EIS | NON-POTABLE | INACTIVE | vocs | NA | NA | NA | NA | | | | · - | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 38W | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | MURAT | IRRIGATION | DESTROYED | PCE | 4.1 | 09/02 | 0.6 | 10/08 | | | | | | TCE
NITRATE (N) | 0.9
6.1 | 09/02
09/04 | ND
3.2 | 10/08
10/08 | | | | | | CLO4 | ND | 04/98 | ND | 04/98 | | | | | | AS | ND | 04/98 | ND | 04/98 | | | SOUTH PASA | DENA, CITY OF | | | | | | | | | GRAV 2 | MUNICIPAL | INACTIVE | PCE | 16.0 | 07/08 | 5.0 | 11/16 | VULNERABLE | | | | | CTC | 0.9 | 07/08 | ND | 11/16 | (VOC,NO3(N),CLO4) | | | | | NITRATE (N)
CLO4 | 13.1
6.9 | 04/87
02/03 | 10.0
ND | 11/16
11/16 | | | | | | AS | 0.9 | 07/96 | ND | 08/15 | | | | | | CR6 | 4.0 | 06/01 | 2.9 | 08/15 | | | WIL 2 | MUNICIPAL | INACTIVE | PCE | 23.0 | 01/88 | 9.1 | 03/01 | | | | | | TCE | 4.6 | 03/00 | 4.6 | 03/01 | | | | | | NITRATE (N)
CLO4 | 19.6
5.0 | 03/00
07/97 | 17.6
ND | 02/01
12/99 | | | | | | AS | 0.6 | 07/97 | ND | 08/99 | | | /A/II 2 | MUNICIPAL | ACTIVE | | | | | | VI II NEDADI E | | WIL 3 | WONICIPAL | ACTIVE | PCE
TCE | 9.5
1.9 | 08/94
04/13 | 1.6
1.1 | 05/20
05/20 | VULNERABLE
(VOC,NO3(N)) | | | | | NITRATE (N) | 14.9 | 01/83 | 4.8 | 05/20 | , , (// | | | | | CLO4
AS | ND
2.5 | 07/97
06/18 | ND
ND | 08/19
08/19 | | | | | | CR6 | 3.7 | 08/16 | 3.3 | 08/19 | | | WIL 4 | MUNICIPAL | ACTIVE | PCE | 8.1 | 06/00 | 2.0 | 05/20 | VULNERABLE | | VVIL 4 | WONIGIFAL | ACTIVE | TCE | 2.1 | 05/07 | 1.3 | 05/20 | (VOC,NO3(N)) | | | | | NITRATE (N) | 6.8 | 02/03 | 6.3 | 05/20 | . " | | | | | CLO4
AS | ND
2.0 | 07/97
02/03 | ND
ND | 08/19
05/18 | | | | | | CR6 | 3.9 | 06/01 | 1.2 | 05/18 | | | SPEEDWAY 60 | 05 INC. | | | | | | | | | | | INIA OTIVIT | 1/000 | | | | | | | NA | NON-POTABLE | INACTIVE | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | STERLING MU | TUAL WATER COM | IPANY | | | | | | | | NEW SO. | MUNICIPAL | ACTIVE | VOCS | ND | 06/91 | ND | 08/19 | VULNERABLE | | INLAN OU. | WONGIFAL | ACTIVE | NITRATE (N) | 7.9 | 02/10 | 3.7 | 05/20 | (NO3(N)) | | | | | CLO4 | ND | 10/97 | ND | 08/19 | " | | | | | AS
CR6 | 2.9
1.0 | 12/00
06/01 | 2.2
ND | 08/17
08/17 | | | | | | ONO | 1.0 | 30/01 | ND | 55/17 | | | li li | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | | | |-------------|---|------------|---------------------|------------|-------------|------------|-------------|---------------| | WELL NAME | USAGE | STATUS | CONCENTRA | | IC HIGH | MOST F | | REMARKS | | WEEE WAINE | OUNGE | GIAIGO | OF CONCERN | VALUE | DATE | VALUE | DATE | REMARKO | | NORTH | MUNICIPAL | ACTIVE | VOCS | ND | 06/88 | ND | 08/19 | VULNERABLE | | NORTH | WONION AL | AOTIVE | NITRATE (N) | 9.8 | 02/07 | 4.1 | 03/20 | (NO3(N)) | | | | | CLO4 | ND | 09/97 | ND | 08/19 | (1.100(1.1)) | | | | | AS | 4.6 | 08/95 | 2.5 | 08/19 | | | | | | CR6 | 1.0 | 06/01 | 1.1 | 08/19 | | | SOUTH | MUNICIPAL | DESTROYED | VOCS | ND | 01/85 | ND | 06/91 | | | 300111 | WONION AL | DESTROTED | NITRATE (N) | 5.0 | 08/18 | 3.3 | 05/19 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 2.6 | 08/11 | 2.2 | 08/17 | | | SUBURBAN WA | ATER SYSTEMS | | | | | | | | | 101W-1 | MUNICIPAL | DESTROYED | TCE | 1.5 | 07/87 | ND | 08/89 | | | 10177-1 | WONION AL | DESTROTED | NITRATE (N) | 12.2 | 08/89 | 12.2 | 08/89 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 02/88 | ND | 08/89 | | | 102W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | 102VV-1 | WONICIPAL | PESINOTED | NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 102W-2 | MUNICIPAL | DESTROYED | TCE | 2.0 | 01/80 | ND | 06/85 | | | 10244-2 | MONIONAL | DESTRUTED | NITRATE (N) | NA | 01/60
NA | NA
NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 103W-1 | MUNICIPAL | DESTROYED | TCE | 2.5 | 06/80 | ND | 07/82 | | | 10344-1 | WONICIPAL | PESTRUTED | NITRATE (N) | Z.5
NA | 06/80
NA | NA | 07/82
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 105W-1 | MUNICIPAL | DESTROYED | PCE | 1.4 | 01/96 | 1.4 | 01/96 | | | | | | NITRATE (N) | 10.4 | 04/95 | 10.4 | 04/95 | | | | | | CLO4 | NA | NA
oc/ss | NA | NA
oc/o4 | | | | | | AS | ND | 06/88 | ND | 06/94 | | | 106W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | OLOT | IVA | 14/-1 | 14/4 | 14/4 | | | 111W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | 18.6
NA | 03/73
NA | 18.6
NA | 03/73
NA | | | | | | | | | | | | | 112W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA
07/60 | NA
22.4 | NA
07/60 | | | | | | NITRATE (N)
CLO4 | 22.4
NA | 07/69
NA | 22.4
NA | 07/69
NA | | | 440.44 | MINUSIE | DECTE 0: : | | | | | | | | 113W-1 | MUNICIPAL | DESTROYED | TCE | 0.7 | 02/80 | 0.5 | 03/85 | | | | | | NITRATE
(N)
CLO4 | 19.2
NA | 10/85
NA | 15.3
NA | 02/88
NA | | | | | | | | | | | | | 114W-1 | MUNICIPAL | DESTROYED | TCE | 2.9 | 01/80 | ND | 07/95 | | | | | | PCE | 0.5 | 12/93 | ND | 07/95 | | | | | | NITRATE (N)
CLO4 | 10.5
NA | 08/91
NA | 9.0
NA | 04/95
NA | | | | | | AS | ND | 11/88 | ND | 11/94 | | | 117W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | 1 1 / VV-1 | MONION AL | PLOTINOTED | NITRATE (N) | NA
NA | NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | 120W-1 | MUNICIPAL | DESTROYED | TCE | 0.3 | 07/82 | ND | 08/96 | | | | | 2200120 | NITRATE (N) | 14.9 | 07/88 | 13.7 | 08/96 | | | | | | CLO4 | NA | NA | NA | NA | | | 121W-1 | MUNICIPAL | ACTIVE | VOCS | ND | 10/02 | ND | 11/18 | VULNERABLE | | | | ·=···= | NITRATE (N) | 6.2 | 05/20 | 6.2 | 05/20 | (NO3(N),CLO4) | | | | | CLO4 | 11.0 | 02/19 | 11.0 | 02/19 | . , , , , , | | | | | AS | 1.6 | 02/04 | ND | 05/20 | | | | | | CR6 | 9.6 | 02/05 | 6.4 | 04/13 | | | 122W-1 | MUNICIPAL | DESTROYED | TCE | 2.6 | 08/96 | 2.6 | 08/96 | | | | | | NITRATE (N) | 20.3 | 05/86 | 13.7 | 08/96 | | | | | | CLO4 | NA | NA
00/70 | NA | NA
or/or | | | | | | AS | 3.0 | 08/79 | ND | 05/85 | | | 123W-1 | MUNICIPAL | DESTROYED | TCE | 26.8 | 04/81 | ND | 08/96 | | | | | | PCE | 33.0 | 04/81 | ND | 08/96 | | | | | | NITRATE (N) | 10.6 | 05/76 | 0.9 | 08/96 | | | | | | | | | | | | | | | 1 | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | | |-----------|-----------|-----------|---|--------------|----------------|--------------|----------------|---------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | | | RECENT | REMARKS | | | 00.10= | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | 1 | | | | | | | | | | | CLO4 | NA | NA | NA | NA | | | 124W-1 | MUNICIPAL | DESTROYED | TCE | 0.5 | 06/83 | ND | 08/89 | | | | | | NITRATE (N) | 13.6 | 09/84 | 12.1 | 08/89 | | | | | | CLO4
AS | NA
ND | NA
06/80 | NA
ND | NA
08/89 | | | | | | | ND | 00/00 | ND | 00/00 | | | 125W-1 | MUNICIPAL | DESTROYED | VOCS | ND | 01/80 | ND | 09/81 | | | | | | NITRATE (N)
CLO4 | 6.8
NA | 05/76
NA | 4.7
NA | 05/79
NA | | | | | | 020 . | | | | | | | 125W-2 | MUNICIPAL | INACTIVE | VOCS | ND | 03/83 | ND | 07/95 | | | | | | NITRATE (N)
CLO4 | 11.3
NA | 08/87
NA | 9.2
NA | 03/95
NA | | | | | | AS | ND | 05/88 | ND | 08/94 | | | 40014/4 | MUNICIDAL | DECTROVER | 1/000 | | N 1.0 | NIA | | | | 126W-1 | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | NA
4.1 | NA
05/75 | NA
4.1 | NA
05/75 | | | | | | CLO4 | NA | NA | NA | NA | | | 400144.0 | | | | | 00/05 | | 00/00 | | | 126W-2 | MUNICIPAL | INACTIVE | VOCS
NITRATE (N) | ND
8.8 | 03/85
07/91 | ND
7.9 | 08/00
03/01 | | | | | | CLO4 | 4.8 | 07/97 | ND | 01/98 | | | | | | AS | 1.3 | 07/96 | ND | 08/00 | | | 131W-1 | MUNICIPAL | DESTROYED | TCE | 56.0 | 10/93 | 56.0 | 10/93 | | | 13177-1 | WONION AL | DESTROTED | PCE | 227.0 | 04/80 | 52.0 | 10/93 | | | | | | CTC | 2.7 | 10/93 | 2.7 | 10/93 | | | | | | 1,1-DCE | 40.0
5.3 | 10/93
10/93 | 40.0 | 10/93
10/93 | | | | | | 1,1,1-TCA
NITRATE (N) | 14.0 | 09/81 | 5.3
12.5 | 10/93 | | | | | | CLO4 | NA | NA | NA | NA | | | 133W-1 | MUNICIDAL | DESTROYED | TOE | 0.5 | 07/97 | ND | 00/00 | | | 13344-1 | MUNICIPAL | DESTRUTED | TCE
CTC | 0.5
0.5 | 07/87
08/89 | 0.5 | 08/89
08/89 | | | | | | NITRATE (N) | 11.1 | 08/89 | 10.8 | 09/89 | | | | | | CLO4 | NA | NA
04/84 | NA | NA
08/80 | | | | | | AS | ND | 04/81 | ND | 08/89 | | | 134W-1 | MUNICIPAL | DESTROYED | TCE | 56.0 | 10/93 | 56.0 | 10/93 | | | | | | PCE | 0.1 | 12/80 | ND | 10/93 | | | | | | 1,1-DCE
1,1,1-TCA | 8.6
13.2 | 10/93
03/83 | 8.6
ND | 10/93
10/93 | | | | | | NITRATE (N) | 9.7 | 06/87 | 9.2 | 10/93 | | | | | | CLO4 | NA | NA
02/00 | NA | NA
07/00 | | | | | | AS | ND | 03/88 | ND | 07/89 | | | 135W-1 | MUNICIPAL | DESTROYED | TCE | 8.0 | 03/85 | 0.3 | 05/85 | | | | | | NITRATE (N) | 13.3 | 02/86 | 10.7 | 09/86 | | | | | | CLO4 | NA | NA | NA | NA | | | 136W-1 | MUNICIPAL | DESTROYED | PCE | 335.0 | 03/80 | 66.0 | 10/93 | | | | | | TCE | 53.0 | 03/80 | 9.1 | 10/93 | | | | | | CTC
1,1-DCE | 2.4
15.0 | 10/93
10/93 | 2.4
15.0 | 10/93
10/93 | | | | | | NITRATE (N) | 10.8 | 01/77 | 8.5 | 10/93 | | | | | | CLO4 | NA
5.0 | NA
00/70 | NA
5.0 | NA
00/70 | | | | | | AS | 5.0 | 08/79 | 5.0 | 08/79 | | | 139W-1 | MUNICIPAL | DESTROYED | TCE | 34.8 | 06/81 | ND | 01/97 | | | | | | PCE | 5.0 | 02/88 | ND | 01/97 | | | | | | CTC
NITRATE (N) | 0.8
22.4 | 09/80
05/94 | ND
21.0 | 07/96
07/96 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 3.6 | 07/95 | 2.6 | 07/96 | | | 139W-2 | MUNICIPAL | INACTIVE | TCE | 18.7 | 09/80 | ND | 05/10 | | | | | | PCE | 12.1 | 03/80 | ND | 05/10 | | | | | | CTC | 0.8 | 09/80 | ND | 05/10 | | | | | | NITRATE (N)
CLO4 | 23.4
34.0 | 10/08
10/08 | 13.2
15.0 | 05/10
05/10 | | | | | | AS | 3.2 | 07/95 | 2.6 | 08/01 | | | 139W-4 | MUNICIPAL | STANDBY | TCE | 4.7 | 04/97 | ND | 11/11 | | | 13311-4 | WUNUCIPAL | SIMNUDI | NITRATE (N) | 4.7
12.0 | 12/15 | 12.0 | 12/19 | | | | | | CLO4 | 13.0 | 12/17 | 11.0 | 12/19 | | | | | | AS
CR6 | 1.5
4.1 | 07/96 | ND
3.5 | 12/14
12/14 | | | | | | CNU | 4.1 | 11/00 | 3.3 | 14/14 | | | | | 1 | CONCENTRATION (NITRATE IN MG/L, OTHERS IN UG/L) | | | | | 1 | |--|-----------|------------|---|-----------------|----------------|-------------|----------------|---------------------| | WELL NAME | USAGE | STATUS | | . ` | RIC HIGH | | RECENT | REMARKS | | WELL NAME | USAGE | 314103 | CONTAMINANT
OF CONCERN | VALUE | DATE | VALUE | DATE | REMARKS | | <u> </u> | | | 11 | | | <u> </u> | | | | 139W-5 | MUNICIPAL | INACTIVE | TCE | 19.0 | 08/01 | 19.0 | 08/01 | | | | | | PCE | 10.8 | 05/99 | 0.7 | 08/01 | | | | | | CTC | 1.0 | 08/01 | 1.0 | 08/01 | | | | | | 1,2-DCA | 1.0 | 02/00 | ND | 08/01 | | | | | | NITRATE (N) | 8.2 | 06/01 | 8.2 | 10/09 | | | | | | CLO4 | 12.0 | 09/97 | 12.0 | 10/09 | | | | | | AS | 1.6 | 07/96 | ND | 08/01 | | | 139W-6 | MUNICIPAL | INACTIVE | TCE | 51.2 | 02/01 | ND | 05/10 | | | | | | PCE | 2.8 | 02/01 | ND | 05/10 | | | | | | CTC | 1.9 | 02/01 | ND | 05/10 | | | | | | 1,2-DCA | 1.6 | 02/01 | ND | 05/10 | | | | | | NITRATE (N) | 9.7 | 10/08 | 8.2 | 05/10 | | | | | | CLO4 | 35.4 | 11/00 | 2.0 | 05/10 | | | | | | AS | 2.7 | 05/96 | ND | 05/99 | | | 140W-1 | MUNICIPAL | DESTROYED | TCE | 1.0 | 01/80 | 1.0 | 01/80 | | | | | | NITRATE (N) | 19.6 | 04/73 | 15.4 | 05/75 | | | | | | CLO4 \ | NA | NA | NA | NA | | | | | | AS | ND | 01/02 | ND | 01/02 | | | 140W-3 | MUNICIPAL | STANDBY | TCE | 13.6 | 03/80 | ND | 12/11 | VULNERABLE | | 14044-0 | WONTON AL | OTANDDI | PCE | 1.0 | 06/88 | ND | 12/11 | (VOC,NO3(N),CLO4) | | | | | CTC | 1.0 | 09/81 | ND | 12/11 | (100,1100(11),0204) | | | | | 1,1-DCE | 1.1 | 10/09 | ND | 12/11 | | | | | | NITRATE (N) | 17.6 | 03/85 | 8.8 | 12/19 | | | | | | CLO4 | 16.0 | 12/05 | 6.4 | 12/19 | | | | | | AS | 4.0 | 08/76 | 2.5 | 12/13 | | | | | | CR6 | 12.7 | 06/01 | 8.7 | 12/14 | | | 4.40\4/.4 | MUNICIPAL | IN A OTIVE | TOF | 7.0 | 04/00 | 4.5 | 44/00 | | | 140W-4 | MUNICIPAL | INACTIVE | TCE | 7.0
8.2 | 01/96
10/03 | 1.5 | 11/06
12/04 | | | | | | NITRATE (N)
CLO4 | 12.6 | 10/03 | 8.2
11.6 | 12/04 | | | | | | AS | 2.4 | 07/95 | ND | 12/04 | | | | | | AG | 2.4 | 01193 | ND | 12/04 | | | 140W-5 | MUNICIPAL | ACTIVE | TCE | 21.0 | 02/91 | ND | 05/18 | VULNERABLE | | | | | PCE | 1.0 | 06/07 | ND | 05/18 | (VOC,NO3(N),CLO4) | | | | | NITRATE (N) | 8.1 | 02/14 | 7.4 | 11/18 | | | | | | CLO4 | 15.0 | 10/12 | ND | 05/18 | | | | | | AS
CR6 | 1.9
9.8 | 07/96
02/05 | ND | 11/18 | | | | | | CRO | 9.0 | 02/05 | 6.8 | 04/13 | | | 142W-1 | MUNICIPAL | DESTROYED | VOCS | ND | 02/80 | ND | 07/82 | | | | | | NITRATE (N) | 16.7 | 06/81 | 16.7 | 06/81 | | | | | | CLO4 | NA | NA | NA | NA | | | 142W-2 | MUNICIPAL | ACTIVE | VOCS | ND | 03/04 | ND | 12/18 | VULNERABLE | | | | | NITRATE (N) | 7.3 | 02/19 | 7.3 | 02/19 | (CLO4) | | | | | CLO4 | 4.2 | 11/18 | 3.8 | 12/18 | | | | | | AS | 1.6 | 07/04 | ND | 08/18 | | | | | | CR6 | 12.0 | 02/05 | 6.8 | 04/13 | | | 147W-1 | MUNICIPAL | DESTROYED | TCE | 23.0 | 03/85 | 23.0 | 03/85 | | | | | | PCE | 1.2 | 03/85 | 1.2 | 03/85 | | | | | | NITRATE (N) | 22.6 | 03/85 | 22.6 | 03/85 | | | | | | CLO4 | NA | NA | NA | NA | | | 147W-2 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | 12.2 | 09/74 | 12.2 | 09/74 | | | | | | CLO4 | NA | NA | NA | NA | | | 147W-3 | MUNICIPAL | DESTROYED | TCE | 4.1 | 01/92 | 2.7 | 11/16 | | | 147 00-3 | MUNICIPAL | DESTRUTED | PCE | 4.1 | 04/89 | 1.9 | 11/16 | | | | | | 1,1-DCE | | 04/89 | | 11/16 | | | | | | 1,1-DCE
1,1-DCA | 8.9
4.8 | 05/89 | 3.6
ND | 11/16 | | | | | | NITRATE (N) | 4.6 | 09/88 | 2.0 | 11/16 | | | | | | CLO4 | 3.0 | 04/10 | ND | 11/16 | | | | | | AS | 1.8 | 07/04 | ND | 08/14 | | | | | | CR6 | 13.0 | 04/05 | 11.0 | 11/16 | | | 4.40\4\4 | MUNICIPAL | DECTROVER | TOF | 0.0 | 00/00 | ND | 04/07 | | | 148W-1 | MUNICIPAL | DESTROYED | TCE
NITRATE (N) | 0.8
10.6 | 06/80
02/76 | ND
7.9 | 04/97
04/97 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 26.0 | 06/78 | 26.0 | 06/78 | | | 4.40141.4 | MUNICIPAL | DECTRO! | V000 | A.1.A | | A.1.A | A.1.A | | | 149W-1 | MUNICIPAL | DESTROYED | VOCS | NA
NA | NA | NA | NA
NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | INA | | | <u></u> | | 11 | | | 1 | | | | |-----------|-----------|------------|---------------------------|-----------------|----------------|-------------|----------------|------------| | | | | CONCENTRAT | . ` | | | | | | WELL NAME | USAGE | STATUS | CONTAMINANT
OF CONCERN | VALUE | DATE |
VALUE | DATE | REMARKS | | | | JI | | VALUE | DAIL | VALUE | DAIL | | | 150W-1 | MUNICIPAL | DESTROYED | TCE | 6.0 | 09/81 | ND | 08/93 | | | | | | NITRATE (N)
CLO4 | 12.0
NA | 03/86
NA | 3.0
NA | 08/94
NA | | | | | | AS | ND | 07/89 | ND | 08/94 | | | 45444 | | DE0770\/FD | 1/000 | | 0.4/0.0 | | 00/00 | | | 151W-1 | MUNICIPAL | DESTROYED | VOCS
NITRATE (N) | ND
26.2 | 01/80
03/98 | ND
26.2 | 03/98
03/98 | | | | | | CLO4 | 21.6 | 03/98 | 21.6 | 03/98 | | | | | | AS | 7.0 | 08/79 | 7.0 | 08/79 | | | 151W-2 | MUNICIPAL | ACTIVE | PCE | 0.6 | 03/19 | 0.6 | 03/19 | VULNERABLE | | | | | TCE | 4.7 | 12/18 | 4.7 | 12/18 | (VOC,CLO4) | | | | | NITRATE (N) | 2.6 | 02/19 | 2.0 | 02/19 | | | | | | CLO4
AS | 5.5
1.4 | 01/17
02/19 | ND
ND | 05/18
02/19 | | | | | | CR6 | 12.0 | 04/05 | 8.1 | 04/13 | | | 450144 | MUNICIDAL | DESTROYED | TOF | 40.0 | 44/00 | 0.0 | 02/05 | | | 152W-1 | MUNICIPAL | DESTROYED | TCE
PCE | 12.8
0.8 | 11/82
11/82 | 8.0
0.3 | 03/85
03/85 | | | | | | NITRATE (N) | 9.8 | 05/86 | 9.8 | 05/86 | | | | | | CLO4 | NA | NA | NA | NA | | | 153W-1 | MUNICIPAL | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 154W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | 18.3
NA | 05/79
NA | 18.3
NA | 05/79
NA | | | | | | CLO4 | INA | INA | IVA | INA | | | 155W-1 | MUNICIPAL | INACTIVE | PCE | 190.0 | 11/80 | 90.0 | 11/98 | | | | | | TCE
CTC | 50.0
19.0 | 07/81
02/82 | 24.0
ND | 11/98
11/98 | | | | | | 1,1-DCE | 16.0 | 03/85 | 13.0 | 11/98 | | | | | | NITRATE (N) | 13.6 | 11/80 | 11.2 | 11/98 | | | | | | CLO4 | 5.4 | 11/98 | 5.4 | 11/98 | | | | | | AS | 4.0 | 08/76 | ND | 03/85 | | | 155W-2 | MUNICIPAL | DESTROYED | PCE | 190.0 | 09/93 | 76.0 | 11/98 | | | | | | TCE | 39.0 | 04/80 | 22.0 | 11/98 | | | | | | 1,1-DCE
1,1-DCA | 21.0
3.0 | 09/93
09/93 | 11.0
1.4 | 11/98
11/98 | | | | | | C-1,2-DCE | 16.0 | 03/85 | 1.8 | 11/98 | | | | | | NITRATE (N) | 11.1 | 11/98 | 11.1 | 11/98 | | | | | | CLO4 | 4.3 | 11/98 | ND | 11/98 | | | 157W-1 | MUNICIPAL | DESTROYED | TCE | 12.2 | 02/80 | ND | 03/85 | | | | | | NITRATE (N) | 13.1 | 02/86 | 13.1 | 02/86 | | | | | | CLO4 | NA | NA | NA | NA | | | 201W-1 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | 20414/ 2 | MUNICIDAL | DESTROYED | TOF | 0.0 | 0.4/00 | 4.7 | 00/00 | | | 201W-2 | MUNICIPAL | DESTRUYED | TCE
PCE | 6.8
3.9 | 04/89
09/88 | 1.7
1.4 | 08/06
08/06 | | | | | | 1,1-DCE | 3.2 | 08/89 | ND | 08/06 | | | | | | C-1,2-DCE | 6.1 | 02/91 | 4.3 | 08/06 | | | | | | NITRATE (N)
CLO4 | 1.5
ND | 08/94
08/97 | 1.4
ND | 08/06
09/03 | | | | | | AS | 8.5 | 08/97 | 3.0 | 08/06 | | | 201W-3 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | 20100-3 | WONGFAL | DESTROTED | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | 201W-4 | MUNICIPAL | INACTIVE | TCE | 6.4 | 09/89 | ND | 06/14 | | | | | | PCE | 4.1 | 09/88 | ND | 06/14 | | | | | | 1,1-DCE | 2.0 | 07/88 | ND | 06/14 | | | | | | C-1,2-DCE
NITRATE (N) | 5.2
4.7 | 05/97
11/14 | ND
4.7 | 06/14
11/14 | | | | | | CLO4 | 4.7
ND | 06/97 | 4.7
ND | 07/14 | | | | | | AS | 4.0 | 08/97 | ND | 06/14 | | | | | | CR6 | 1.9 | 05/01 | ND | 11/14 | | | 201W-5 | MUNICIPAL | DESTROYED | TCE | 6.4 | 09/89 | ND | 03/08 | | | | | | PCE | 3.8 | 09/89 | ND | 03/08 | | | | | | 1,1-DCE
C-1,2-DCE | 2.9
4.9 | 09/88
08/88 | ND
ND | 03/08
03/08 | | | | | | J 1,2-DOL | 7.5 | 30/00 | מאו | 30/00 | | | | | | CONCENTRAT | TION (NITRATE | IN MG/L, | OTHERS IN U | G/L) | | |-------------------------------|------------------------------|--------------------|--|---|---|---|--|------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTORI | C HIGH | MOST R | ECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | NITRATE (N) | 2.7 | 08/94 | 2.7 | 08/07 | | | | | | CLO4 | ND | 06/97 | ND | 06/03 | | | | | | AS | 8.9 | 09/89 | 4.0 | 09/05 | | | 004144.0 | MUNICIPAL | DEOTDOVED | TOF | 0.0 | 05/00 | ND | 00/05 | | | 201W-6 | MUNICIPAL | DESTROYED | TCE | 3.9 | 05/88 | ND | 09/05 | | | | | | PCE
1,1-DCE | 3.3
3.2 | 05/88
09/88 | ND
ND | 09/05
09/05 | | | | | | C-1,2-DCE | 8.7 | 05/88 | ND | 09/05 | | | | | | NITRATE (N) | 4.5 | 06/85 | 1.7 | 05/05 | | | | | | CLO4 | ND | 06/97 | ND | 06/03 | | | | | | AS | 9.2 | 08/95 | 2.0 | 09/04 | | | 201W-7 | MUNICIPAL | ACTIVE | PCE | 0.7 | 05/19 | ND | 05/20 | | | 20100-7 | WONION AL | ACTIVE | C-1,2-DCE | 0.9 | 08/08 | ND | 05/20 | | | | | | NITRATE (N) | 3.3 | 08/16 | 2.5 | 08/19 | | | | | | CLO4 | ND | 08/08 | ND | 08/19 | | | | | | AS | 2.0 | 08/08 | ND | 08/14 | | | | | | CR6 | 0.8 | 04/13 | 8.0 | 04/13 | | | 20414/ 0 | MUNICIDAL | A CTIV/E | TOF | 0.5 | 05/07 | ND | 05/20 | | | 201W-8 | MUNICIPAL | ACTIVE | TCE
C-1,2-DCE | 0.5
1.1 | 05/07
05/07 | ND
ND | 05/20
05/20 | | | | | | NITRATE (N) | 3.6 | 08/16 | 2.9 | 08/19 | | | | | | CLO4 | 2.1 | 07/06 | ND | 08/19 | | | | | | AS | 2.7 | 08/09 | ND | 08/18 | | | | | | CR6 | 1.1 | 05/07 | 0.9 | 04/13 | | | 201W-9 | MUNICIPAL | ACTIVE | PCE | 1.2 | 11/19 | 0.9 | 05/20 | | | ZU 1 VV-3 | WONIGIPAL | ACTIVE | NITRATE (N) | 5.0 | 02/19 | 3.2 | 05/20 | | | | | | CLO4 | ND | 03/08 | ND | 08/19 | | | | | | AS | 1.5 | 05/07 | ND | 02/20 | | | | | | CR6 | 0.6 | 04/13 | 0.6 | 04/13 | | | | | | | | | | | | | 201W-10 | MUNICIPAL | ACTIVE | TCE | 1.4 | 09/07 | ND | 05/20 | | | | | | PCE | 1.3 | 09/07 | ND | 05/20 | | | | | | C-1,2-DCE | 3.0 | 09/07
05/17 | ND
0.7 | 05/20
05/20 | | | | | | NITRATE (N)
CLO4 | 1.8
ND | 09/07 | 0.7
ND | 05/20 | | | | | | AS | 2.1 | 09/07 | ND | 05/18 | | | | | | CR6 | 0.3 | 09/07 | ND | 05/18 | | | 0001111 | | 5507501/55 | T05 | 4.0 | 00/04 | | 0.4.10.0 | | | 202W-1 | MUNICIPAL | DESTROYED | TCE
PCE | 4.3 | 09/81 | ND | 01/89 | | | | | | NITRATE (N) | 15.0
5.4 | 10/88
07/87 | 12.1
5.2 | 01/89
10/88 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | ND | 09/88 | ND | 09/88 | | | | | ., | | | | | | | | UNNY SLOPE | WATER COMPAN | Y | | | | | | | | 08 | MUNICIPAL | ACTIVE | VOCS | ND | 01/87 | ND | 09/19 | VULNERABLE | | | | | NITRATE (N) | 6.1 | 08/16 | 3.1 | 05/19 | (NO3(N)) | | | | | | ND | 07/97 | ND | 09/19 | | | | | | CLO4 | ND | | | | | | | | | AS | ND | 09/89 | ND | 09/17 | | | | | | | | | | 09/17
09/17 | | | 09 | MUNICIPAI | ACTIVE | AS
CR6 | ND
7.1 | 09/89
12/00 | ND
5.4 | 09/17 | VIII NERABI E | | 09 | MUNICIPAL | ACTIVE | AS
CR6
VOCS | ND | 09/89 | ND | | VULNERABLE
(NO3(N)) | | 09 | MUNICIPAL | ACTIVE | AS
CR6 | ND
7.1
ND | 09/89
12/00
01/85 | ND
5.4
ND | 09/17
06/19 | VULNERABLE
(NO3(N)) | | 09 | MUNICIPAL | ACTIVE | AS
CR6
VOCS
NITRATE (N) | ND
7.1
ND
8.1 | 09/89
12/00
01/85
06/03 | ND
5.4
ND
3.3 | 09/17
06/19
05/19 | | | 09 | MUNICIPAL | ACTIVE | AS
CR6
VOCS
NITRATE (N)
CLO4 | ND
7.1
ND
8.1
ND | 09/89
12/00
01/85
06/03
07/97 | ND
5.4
ND
3.3
ND | 09/17
06/19
05/19
09/19 | | | | | | AS
CR6
VOCS
NITRATE (N)
CLO4
AS
CR6 | ND
7.1
ND
8.1
ND
3.6
7.0 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17 | ND
5.4
ND
3.3
ND
ND
7.0 | 09/17
06/19
05/19
09/19
09/18
03/17 | | | 09 | MUNICIPAL
MUNICIPAL | ACTIVE | AS
CR6
VOCS
NITRATE (N)
CLO4
AS
CR6
VOCS | ND
7.1
ND
8.1
ND
3.6
7.0 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17 | ND
5.4
ND
3.3
ND
ND
7.0 | 09/17
06/19
05/19
09/19
09/18
03/17 | | | | | | AS
CR6
VOCS
NITRATE (N)
CLO4
AS
CR6
VOCS
NITRATE (N) | ND
7.1
ND
8.1
ND
3.6
7.0
ND
14.4 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94 | ND
5.4
ND
3.3
ND
ND
7.0
ND | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19 | | | | | | AS
CR6
VOCS
NITRATE (N)
CLO4
AS
CR6
VOCS | ND
7.1
ND
8.1
ND
3.6
7.0 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17 | ND
5.4
ND
3.3
ND
ND
7.0 | 09/17
06/19
05/19
09/19
09/18
03/17 | | | 10 | MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS | ND
7.1
ND
8.1
ND
3.6
7.0
ND
14.4
NA
0.7 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96 | ND
5.4
ND
3.3
ND
ND
7.0
ND
0.5
NA
0.7 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96 | | | | | | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96 | | | 10 | MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) NITRATE (N) | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 |
09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/18 | | | 10 | MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND 1.3 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/19 | | | 10 | MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND 3.2 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96
09/09
07/97
06/15 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND ND | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/19
06/19
07/18 | | | 10 | MUNICIPAL
MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND 1.3 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/19 | | | 10 | MUNICIPAL
MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND 3.2 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96
09/09
07/97
06/15 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND ND | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/19
06/19
07/18 | | | 10
13
AYLOR HERB | MUNICIPAL MUNICIPAL GARDEN | INACTIVE
ACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS CR6 | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND 3.2 13.0 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96
09/09
07/97
06/15
03/17 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND 13.0 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/19
07/18
03/20 | | | 10 | MUNICIPAL
MUNICIPAL | INACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO6 AS CR6 | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND 3.2 13.0 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96
09/09
07/97
06/15
03/17 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND 13.0 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/18
06/19
07/18
03/20 | | | 10
13
AYLOR HERB | MUNICIPAL MUNICIPAL GARDEN | INACTIVE
ACTIVE | AS CR6 VOCS NITRATE (N) CLO4 AS CR6 VOCS NITRATE (N) CLO4 AS VOCS NITRATE (N) CLO4 AS CR6 | ND 7.1 ND 8.1 ND 3.6 7.0 ND 14.4 NA 0.7 ND 1.6 ND 3.2 13.0 | 09/89
12/00
01/85
06/03
07/97
08/96
03/17
01/85
12/94
NA
08/96
08/96
09/09
07/97
06/15
03/17 | ND 5.4 ND 3.3 ND ND 7.0 ND 0.5 NA 0.7 ND 1.3 ND ND 13.0 | 09/17
06/19
05/19
09/19
09/18
03/17
08/96
05/19
NA
08/96
06/19
06/19
07/18
03/20 | | | | | | CONCENTRA | TION (NITRAT | E IN MG/L. (| OTHERS IN | UG/L) | | |--------------|-----------------|-----------|--|--|--|------------------------------------|--|---------| | WELL NAME | USAGE | STATUS | CONTAMINANT | - ' | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | 14 | INDUSTRIAL | DESTROYED | PCE
TCE
1,2-DCA
NITRATE (N)
CLO4 | 40.0
5.0
0.6
7.5
ND | 07/01
05/85
01/96
07/01
09/97 | 2.8
ND
ND
1.4
ND | 09/03
09/03
09/03
09/03
09/97 | | | THOMPSON, E | ARL W. | | | | | | | | | 01 | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | U1 | DOWLSTIC | INACTIVE | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | TOMOVICH (NI | CK) & SON | | | | | | | | | NA | DOMESTIC | DESTROYED | VOCS
NITRATE (N)
CLO4 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | | TRAN, HIEU | | | | | | | | | | TRAN | IRRIGATION | ACTIVE | VOCS
NITRATE (N)
CLO4 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | | TYLER NURSE | RY | | | | | | | | | NA | IRRIGATION | INACTIVE | TCE PCE 1,1-DCE 1,1-DCA C-1,2-DCE NITRATE (N) CLO4 | 12.9
44.6
0.6
0.9
8.7
7.0
NA | 12/99
12/99
09/02
09/02
09/02
09/02
NA | 1.2
1.2
ND
ND
ND
ND | 09/04
09/04
09/04
09/04
09/04
09/04
NA | | | UNITED CONC | RETE PIPE CORPO | DRATION | | | | | | | | NA | INDUSTRIAL | DESTROYED | VOCS
NITRATE (N)
CLO4 | ND
1.0
NA | 08/89
08/89
NA | ND
1.0
NA | 10/08
08/89
NA | | | UNITED ROCK | PRODUCTS CORE | PORATION | | | | | | | | IRW-1 | INDUSTRIAL | ACTIVE | VOCS
NITRATE (N)
CLO4
AS | ND
1.4
ND
ND | 08/89
07/96
02/98
04/98 | ND
1.3
ND
ND | 12/19
12/19
02/98
04/98 | | | IRW-2 | INDUSTRIAL | ACTIVE | VOCS
NITRATE (N)
CLO4 | ND
1.3
ND | 07/96
12/19
02/98 | ND
1.3
ND | 12/19
12/19
02/98 | | | SIERRA | INDUSTRIAL | INACTIVE | VOCS
NITRATE (N)
CLO4 | NA
NA
NA | NA
NA
NA | NA
NA
NA | NA
NA
NA | | | VALENCIA HE | IGHTS WATER CO | MPANY | | | | | | | | 01 | MUNICIPAL | INACTIVE | VOCS
NITRATE (N)
CLO4
AS | ND
10.5
8.5
0.7 | 06/89
04/99
08/00
08/96 | ND
7.4
ND
ND | 07/09
07/07
07/09
07/07 | | | 02 | MUNICIPAL | INACTIVE | TCE
NITRATE (N)
CLO4
AS | 0.2
12.1
8.0
0.9 | 01/80
07/97
10/98
08/96 | ND
6.1
4.2
ND | 07/08
07/06
07/08
07/06 | | | 03A | MUNICIPAL | INACTIVE | VOCS
NITRATE (N)
CLO4 | ND
7.9
NA | 03/85
09/89
NA | ND
2.7
NA | 03/92
08/92
NA | | | 04 | MUNICIPAL | INACTIVE | PCE
NITRATE (N)
CLO4
AS
CR6 | 1.0
20.3
32.6
2.2
5.0 | 09/99
11/97
11/00
07/00
11/00 | ND
17.6
28.0
ND
5.0 | 09/01
03/02
03/02
08/00
11/00 | | | | | | CONCENTRA | | | | | | |-------------|-----------------|-----------|----------------------|----------------|----------------|----------------|----------------|-----------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTOR | RIC HIGH | MOST | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | 0.5 | | A 0711 /F | 1,000 | | 00/00 | NB | 0.4/0.0 | | | 05 | MUNICIPAL | ACTIVE | VOCS
NITRATE (N) | ND
9.5 | 06/90
08/12 | ND
6.9 | 04/20
09/18 | VULNERABLE
(NO3(N),CLO4) | | | | | CLO4 | 7.2 | 11/00 | ND | 04/20 | (1403(14),0204) | | | | | AS | 0.9 | 08/96 | ND | 09/18 | | | | | | CR6 | 1.7 | 08/13 | 1.3 | 01/17 | | | 06 | MUNICIPAL | ACTIVE | vocs | ND | 12/02 | ND | 07/19 | VULNERABLE | | | | | NITRATE (N) | 11.1 | 06/04 | 11.0 | 05/19 | (NO3(N),CLO4) | | | | | CLO4
AS | 8.9
ND | 01/07
12/02 | 6.8
ND | 04/20 | | | | | | CR6 | 8.0 | 12/02 | 3.4 | 10/17
10/17 | | | 07 | MUNICIPAL | ACTIVE | vocs | ND | 05/08 | ND | 07/19 | VULNERABLE | | | | | NITRATE (N) | 9.8 | 10/18 | 8.0 | 05/19 | (NO3(N),CLO4) | | | | | CLO4 | 5.4 | 10/12 | ND | 04/20 | | | | | | AS
CR6 | ND
1.2 | 12/09
08/13 | ND
1.2 | 10/18
08/13 | | | VALLEY COUN | TY WATER DISTRI | ICT | | | | | | | | | | | TOF | 700.0 | 07/92 | 600.0 | 12/06 | | | ARROW | MUNICIPAL | INACTIVE | TCE
PCE | 700.0
980.0 | 07/82
12/96 | 600.0
980.0 | 12/96
12/96 | | | | | | 1,1-DCE | 64.0 | 12/96 | 64.0 | 12/96 | | | | | | C-1,2-DCE | 59.0 | 12/96 | 59.0 | 12/96 | | | | | | CTC | 14.5 | 09/92 | 8.0 | 12/96 | | | | | | 1,2-DCA | 9.0 | 02/92 | 7.3 | 12/96 | | | | | | 1,1,1-TCA
1,1-DCA | 45.0
2.9 | 12/96
02/95 | 45.0
2.7 | 12/96
12/96 | | | | | | NITRATE (N) | 6.0 | 08/96 | 6.0 | 08/96 | | | | | | CLO4 | NA | NA | NA | NA | | | | | | AS | 1.5 | 08/96 | 1.5 | 08/96 | | | B DALTON | MUNICIPAL | INACTIVE | TCE | 137.0 | 04/85 | ND | 05/11 | | | | | | PCE | 8.0 | 04/85 | ND | 05/11
05/11 | | | | | | 1,1-DCA
C-1,2-DCE | 0.9
2.0 | 05/96
11/95 | ND
ND | 05/11 | | | | | | CTC | 9.9 | 04/85 | ND | 05/11 | | | | | | 1,2-DCA | 11.0 | 12/98 | ND | 05/11 | | | | | | NITRATE (N) | 16.3 | 10/09 | 16.3 | 05/11 | | | | | | CLO4
AS | 99.1
5.0 | 12/98
11/95 | 11.0
2.7 | 05/11
09/07 | | | E NIXON | MUNICIPAL | ACTIVE | TCE | 7.0 | 11/08 | ND | 05/20 | VULNERABLE | | (E JOAN) | | 7.02 | PCE | 11.0 | 10/04 | ND | 05/20 | (VOC) | | , | | | 1,1-DCE | 1.3 | 10/04 | ND | 05/20 | , | | | | | C-1,2-DCE | 1.7 | 10/04 | ND | 05/20 | | | | | | NITRATE (N) | 3.1 | 02/05 | 0.8 | 05/20 | | | | | | CLO4
AS | ND
3.0 | 05/97
08/06 | ND
2.1 | 07/19
07/19 | | | | | | CR6 | 1.0 | 05/01 | ND | 07/19 | | | E MAINE | MUNICIPAL | ACTIVE | TCE | 36.0 | 10/04 | ND | 05/20 | VULNERABLE | | | | | PCE | 110.0 | 10/04 | ND | 05/20 | (VOC,CLO4) | | | | | 1,1-DCE
1,2-DCA | 10.1
1.4 | 02/91
10/04 | ND
ND | 05/20
05/20 | | | | | | 1,1,1-TCA | 9.1 | 02/91 | ND | 05/20 | | | | | | C-1,2-DCE | 13.0 | 06/03
 ND | 05/20 | | | | | | NITRATE (N) | 4.7 | 02/11 | 0.9 | 05/20 | | | | | | CLO4 | 7.8 | 10/04 | ND | 07/19 | | | | | | AS
CR6 | 4.4
1.0 | 08/89
05/01 | 2.0
ND | 08/17
08/17 | | | LANTE | MUNICIPAL | ACTIVE | TCE | 1315.0 | 04/98 | 56.0 | 09/19 | VULNERABLE | | (SA1-3) | | | PCE | 1200.0 | 11/96 | 130.0 | 09/19 | (VOC,NO3(N),CLO4) | | | | | 1,1-DCE | 110.0 | 11/96 | 0.9 | 09/19 | | | | | | C-1,2-DCE | 90.0 | 11/96 | 2.8 | 09/19 | | | | | | T-1,2-DCE
1,1-DCA | 110.0
18.0 | 04/85
08/04 | ND
ND | 09/19
09/19 | | | | | | 1,1-DCA
1,2-DCA | 12.5 | 01/92 | ND | 09/19 | | | | | | CTC | 17.6 | 01/92 | ND | 09/19 | | | | | | 1,1,1-TCA | 170.0 | 04/85 | ND | 09/19 | | | | | | NITRATE (N) | 11.0 | 11/18 | 5.1 | 02/20 | | | | | | CLO4
AS | 94.0
2.4 | 04/98
01/05 | 7.5
ND | 05/17
05/18 | | | | | | CR6 | 18.0 | 01/05 | <2 | 05/18 | | | MORADA | MUNICIPAL | INACTIVE | TCE | 770.0 | 03/80 | ND | 05/11 | | | | | | PCE | 100.0 | 02/85 | 2.2 | 05/11 | | | | | 1 | CONCENTRA | TION (NITDAT | EINMG/L (| TUEDO IN I | IC/L\ | | |-------------|--------------|----------|-----------------------|--------------|----------------|------------|----------------|-------------------| | WELL NAME | USAGE | STATUS | CONCENTRA | | RIC HIGH | | RECENT | REMARKS | | WELL NAME | USAGE | SIAIUS | OF CONCERN | VALUE | DATE | VALUE | DATE | REWIARRS | | | | N | | | | 1 | | | | | | | CTC | 29.0 | 04/84 | ND | 05/11 | | | | | | 1,1-DCE | 2.5 | 04/88 | ND | 05/11 | | | | | | 1,1-DCA | 8.5 | 02/85 | ND | 05/11 | | | | | | 1,2-DCA | 0.7 | 04/88 | ND | 05/11 | | | | | | C-1,2-DCE | 8.1 | 08/95 | ND | 05/11 | | | | | | NITRATE (N) | 25.0 | 11/90 | 19.3 | 05/11 | | | | | | CLO4 | 21.0 | 02/04 | 11.0 | 05/11 | | | | | | AS | 3.6 | 08/95 | 3.6 | 08/95 | | | PADDY LN | MUNICIPAL | INACTIVE | TCE | 166.0 | 04/94 | 29.0 | 05/11 | | | 17.001 2.1 | | | PCE | 42.0 | 11/93 | 3.5 | 05/11 | | | | | | CTC | 15.0 | 12/87 | 1.0 | 05/11 | | | | | | 1,1-DCE | 17.2 | 11/93 | 1.6 | 05/11 | | | | | | C-1,2-DCE | 23.8 | 11/93 | 1.9 | 05/11 | | | | | | 1,2-DCA | 6.6 | 02/04 | 2.6 | 05/11 | | | | | | NITRATE (N) | 14.2 | 05/10 | 8.9 | 05/11 | | | | | | CLO4 | 154.0 | 02/98 | 38.0 | 05/11 | | | | | | AS | ND | 06/80 | ND | 11/94 | | | PALM | MUNICIPAL | INACTIVE | СТС | 48.0 | 07/82 | 0.8 | 02/04 | | | I ALIVI | WONION AL | INACTIVE | TCE | 56.0 | 02/04 | 56.0 | 02/04 | | | | | | PCE | 51.0 | 02/04 | 51.0 | 02/04 | | | | | | C-1,2-DCE | 7.1 | 02/04 | 7.1 | 02/04 | | | | | | 1,1,1-TCA | 1.8 | 02/04 | 1.8 | 02/04 | | | | | | NITRATE (N) | 2.5 | 12/94 | 2.3 | 02/04 | | | | | | CLO4 | 5.6 | 02/04 | 5.6 | 02/04 | | | | | | AS | ND | 10/87 | ND | 11/92 | | | | | | | | | | | | | W NIXON | MUNICIPAL | ACTIVE | TCE | 4.0 | 11/04 | ND | 05/20 | VULNERABLE | | (W JOAN) | | | PCE | 8.0 | 11/04 | ND | 05/20 | (VOC) | | | | | NITRATE (N) | 1.9 | 08/13 | 1.2 | 05/20 | | | | | | CLO4
AS | ND
3.1 | 05/97
08/95 | ND
2.0 | 07/19
07/19 | | | | | | CR6 | 1.0 | 05/01 | ND | 07/19 | | | | | | CNO | 1.0 | 03/01 | ND | 07/19 | | | W MAINE | MUNICIPAL | ACTIVE | TCE | 47.3 | 02/91 | ND | 05/20 | VULNERABLE | | | | | PCE | 70.0 | 02/03 | ND | 05/20 | (VOC,CLO4) | | | | | 1,1-DCE | 14.2 | 02/91 | ND | 05/20 | | | | | | 1,2-DCA | 8.0 | 08/04 | ND | 05/20 | | | | | | 1,1,1-TCA | 10.6 | 02/91 | ND | 05/20 | | | | | | C-1,2-DCE | 9.0 | 02/03 | ND | 05/20 | | | | | | NITRATE (N) | 4.7 | 05/90 | 0.7 | 05/20 | | | | | | CLO4 | 6.3 | 10/04 | ND | 07/19 | | | | | | AS
CR6 | 2.6
1.0 | 07/96
05/01 | 2.0
ND | 08/17
08/17 | | | | | | 0110 | 1.0 | 00/01 | ND | 00/11 | | | SA1-1 | MUNICIPAL | ACTIVE | TCE | 34.0 | 07/05 | 4.2 | 09/19 | VULNERABLE | | | | | PCE | 47.0 | 04/07 | 3.2 | 09/19 | (VOC,CLO4,NO3(N)) | | | | | 1,1-DCA | 11.0 | 07/05 | ND | 09/19 | | | | | | 1,1-DCE | 110.0 | 07/05 | 3.4 | 09/19 | | | | | | 1,2-DCA | 1.0 | 07/05 | ND | 09/19 | | | | | | C-1,2-DCE | 4.1 | 07/05 | ND | 09/19 | | | | | | 1,1,1-TCA
FREON 11 | 6.0
5.8 | 05/06
02/12 | ND
ND | 09/19
09/19 | | | | | | NITRATE (N) | 21.0 | 05/18 | 14.0 | 02/20 | | | | | | CLO4 | 17.0 | 01/05 | 6.0 | 05/17 | | | | | | AS | 1.3 | 06/03 | ND | 05/18 | | | | | | CR6 | 2.4 | 03/06 | 1.7 | 05/18 | | | | | | | | | | | | | SA1-2 | MUNICIPAL | INACTIVE | TCE
PCE | 25.0
37.0 | 04/06
05/06 | 2.0
4.8 | 12/09
12/09 | | | | | | 1,1-DCA | 8.7 | 07/05 | 4.0
ND | 12/09 | | | | | | 1,1-DCA
1,1-DCE | 62.0 | 04/06 | 1.2 | 12/09 | | | | | | 1,1-DCE
1,2-DCA | 1.0 | 07/05 | ND | 12/09 | | | | | | C-1,2-DCE | 6.2 | 07/05 | ND | 12/09 | | | | | | 1,1,1-TCA | 2.2 | 05/06 | ND | 12/09 | | | | | | NITRATE (N) | 16.3 | 03/05 | 16.3 | 05/12 | | | | | | CLO4 | 15.0 | 03/05 | 11.0 | 12/09 | | | | | | AS | 2.0 | 03/06 | ND | 02/09 | | | | | | CR6 | 2.6 | 03/06 | 2.0 | 09/07 | | | VALLEY VIEW | MUTUAL WATER | COMPANY | | | | | | | | 01 | MUNICIPAL | INACTIVE | vocs | ND | 06/89 | ND | 09/10 | | | - | - ' | - | NITRATE (N) | 1.4 | 09/09 | 1.3 | 09/10 | | | | | | CLO4 | ND | 08/97 | ND | 09/10 | | | | | | AS | 3.0 | 09/07 | ND | 09/10 | | | | | | CR6 | 1.0 | 11/00 | 1.0 | 05/01 | | | | | | | | | | | | | | <u> </u> | | CONCENTRA | TION (NITDAT | EIN MC/L / | OTHERS IN I | IG/L\ | TI . | |---------------|------------------|----------------|---------------------|--------------|----------------|-------------|----------------|------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | | RIC HIGH | | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | 00 | MUNICIDAL | ACTIVE | DCE | 2.1 | 00/16 | ND | 02/20 | | | 02 | MUNICIPAL | ACTIVE | PCE
TCE | 2.1
0.7 | 09/16
09/16 | ND
ND | 03/20
03/20 | | | | | | NITRATE (N) | 1.8 | 09/15 | 1.2 | 09/19 | | | | | | CLO4 | ND | 08/97 | ND | 09/19 | | | | | | AS | 2.0 | 09/96 | ND | 09/19 | | | | | | CR6 | 2.5 | 05/01 | ND | 09/19 | | | 03 | MUNICIPAL | INACTIVE | TCE | 1.3 | 01/80 | ND | 03/98 | | | | | | NITRATE (N)
CLO4 | 6.1
18.6 | 03/98
03/98 | 6.1
18.6 | 03/98
03/98 | | | VIA TRUST | | | 020. | .0.0 | 00/00 | 10.0 | 00/00 | | | 0.4 | NON DOTABLE | DECTROVER | 1/000 | NIA | NIA | NIA | NIA | | | 01 | NON-POTABLE | DESTROYED | VOCS
NITRATE (N) | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | VULCAN MATE | ERIALS COMPANY | (CALMAT COMPAN | Y) | | | | | | | DUR E | INDUSTRIAL | DESTROYED | TCE | 32.0 | 11/04 | ND | 10/10 | | | | | | PCE | 27.0 | 11/04 | 0.9 | 10/10 | | | | | | 1,1-DCE | 5.3 | 11/04 | ND | 10/10 | | | | | | C-1,2-DCE | 2.8 | 11/04 | ND | 10/10 | | | | | | 1,1,1-TCA | 0.7
3.7 | 11/04
10/04 | ND
1.6 | 10/10
10/10 | | | | | | NITRATE (N)
CLO4 | 3.7
ND | 04/98 | ND | 10/10 | | | | | | AS | ND | 04/98 | ND | 04/98 | | | DUR W | INDUSTRIAL | DESTROYED | PCE | 0.8 | 02/07 | ND | 10/09 | | | DOILL | II I DOOTI II IL | DEGINOTED | NITRATE (N) | 3.6 | 07/01 | 3.2 | 10/09 | | | | | | CLO4 | 4.0 | 05/98 | 4.0 | 05/98 | | | | | | AS | 2.9 | 05/98 | 2.9 | 05/98 | | | REL 1 | INDUSTRIAL | ACTIVE | VOCS | ND | 05/94 | ND | 11/19 | | | | | | NITRATE (N) | 1.5 | 09/02 | ND | 11/19 | | | | | | CLO4
AS | ND
4.8 | 05/98
05/94 | ND
3.5 | 05/98
07/94 | | | WADE, RICHA | RD I. | | 7.0 | | 00/01 | 0.0 | 0.70 | | | NA | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | INA | DOMESTIC | INACTIVE | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | WEST COVINA | VENTURE LIMITE | D | | | | | | | | NA | NA | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | WHITTIER, CIT | Y OF | | | | | | | | | 09 | MUNICIPAL | DESTROYED | TCE | 1.4 | 04/85 | ND | 08/89 | | | 00 | | 223110120 | PCE | 1.9 | 10/88 | 0.6 | 08/89 | | | | | | NITRATE (N) | 2.0 | 08/89 | 2.0 | 08/89 | | | | | | CLO4 | NA | NA
07/74 | NA | NA | | | | | | AS | ND | 07/74 | ND | 08/89 | | | 10 | MUNICIPAL | DESTROYED | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N) | 1.5 | 01/74 | 1.5 | 01/74 | | | | | | CLO4 | NA | NA | NA | NA | | | 11 | MUNICIPAL | DESTROYED | VOCS | ND | 06/87 | ND | 11/90 | | | | | | NITRATE (N) | 2.3 | 01/90 | 2.3 | 01/90 | | | | | | CLO4
AS | NA
ND | NA
04/80 | NA
ND | NA
08/89 | | | | | | | | | | | | | 12 | MUNICIPAL | INACTIVE | TCE | 1.5 | 07/88 | 1.5 | 07/88 | | | | | | PCE
NITRATE (N) | 0.7
2.3 | 07/88
12/84 | 0.7
1.9 | 07/88
12/85 | | | | | | CLO4 | NA | NA | NA | NA | | | 13 | MUNICIPAL | ACTIVE | PCE | 4.9 | 11/87 | ND | 09/19 | VULNERABLE | | 13 | WONGFAL | ACTIVE | TCE | 4.9
1.1 | 06/87 | ND | 09/19 | (VOC) | | | | | MTBE | 6.4 | 03/02 | ND | 09/19 | (/ | | | | | NITRATE (N) | 3.8 | 03/11 | 3.0 | 03/19 | | | | | | CLO4 | ND | 08/97 | ND | 03/19 | | | | | | AS
CR6 | 4.1
1.0 | 03/02
05/01 | ND
ND | 03/17
03/17 | | | | | | ONU | 1.0 | 03/01 | ND | 03/17 | | | | 1 | | CONCENTRA | FION (NITEAT | FEINING/L (| THERE IN | HC/L) | 1 | |-------------|------------------|------------------|--------------------------|--------------|----------------|------------|----------------|---------------------| | WELL NAME | USAGE | STATUS | CONCENTRAT | | RIC HIGH | | RECENT | REMARKS | | | 00/102 | | OF CONCERN | VALUE | DATE | VALUE | DATE | - | | | | | " | | | <u>'</u> | | -! | | 15 | MUNICIPAL | ACTIVE | PCE | 9.4 | 03/03 | ND | 03/20 | VULNERABLE | | 10 | MONION AL | NOTIVE | TCE | 0.7 | 09/04 | ND | 03/20 | (VOC) | | | | | C-1,2-DCE | 2.5 | 12/93 | ND | 03/20 | (/ | | | | | NITRATE (N) | 2.9 | 08/89 | 1.6 | 09/19 | | | | | | CLO4 | ND | 08/97 | ND | 09/19 | | | | | | AS
CR6 | 3.5
2.2 | 03/02
10/00 | ND
ND | 09/16
09/19 | | | | | | CINO | 2.2 | 10/00 | ND | 03/13 | | | 16 | MUNICIPAL | ACTIVE | PCE | 3.4 | 12/02 | 0.5 | 03/20 | VULNERABLE | | | | | TCE | 1.4 | 01/97 | ND | 03/20 | (VOC) | | | | | C-1,2-DCE | 2.5 | 10/96 | ND | 03/20 | | | | | | NITRATE (N)
CLO4 | 3.0
ND | 03/16
08/97 | 2.3
ND | 03/20
09/19 | | | | | | AS | 5.8 | 03/02 | 2.2 | 03/20 | | | | | | CR6 | 2.5 | 05/01 |
ND | 03/20 | | | | | | | | | | | | | 17 | MUNICIPAL | ACTIVE | PCE | 12.0 | 12/02 | 1.4 | 03/20 | VULNERABLE | | | | | TCE
C-1,2-DCE | 2.2
1.2 | 05/92
04/95 | ND
ND | 03/20
03/20 | (VOC) | | | | | NITRATE (N) | 2.9 | 03/03 | 2.4 | 03/20 | | | | | | CLO4 | ND | 08/97 | ND | 09/19 | | | | | | AS | 3.4 | 03/02 | ND | 03/16 | | | | | | CR6 | 1.6 | 10/00 | ND | 03/16 | | | 40 | MUNICIDAL | A OTIVE | DOE | 0.2 | 40/40 | 4.0 | 00/00 | VIII NEDADI E | | 18 | MUNICIPAL | ACTIVE | PCE
TCE | 9.3
2.4 | 12/18
11/95 | 4.8
ND | 03/20
03/20 | VULNERABLE
(VOC) | | | | | C-1,2-DCE | 0.7 | 10/96 | ND | 03/20 | (VOC) | | | | | NITRATE (N) | 3.4 | 03/17 | 3.1 | 03/20 | | | | | | CLO4 | ND | 08/97 | ND | 09/19 | | | | | | AS | 4.1 | 03/02 | ND | 03/18 | | | | | | CR6 | 1.0 | 10/00 | ND | 03/18 | | | WILMOTT, ER | MA M. | | | | | | | | | | | | | | | | | | | 01 | DOMESTIC | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | WOODLAND, | RICHARD | | | | | | | | | 01 | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | O1 | NON-FOTABLE | INACTIVE | NITRATE (N) | NA | NA | NA | NA | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | 02 | NON-POTABLE | INACTIVE | VOCS | NA | NA | NA | NA | | | | | | NITRATE (N)
CLO4 | NA
NA | NA
NA | NA
NA | NA
NA | | | | | | CLO4 | INA | INA | INA | INA | | | WORKMAN MI | ILL INVESTMENT C | OMPANY (ROSE HII | LLS MEMORIAL PAR | () | | | | | | 0.4 | IDDICATION | INIA OTIVE | DOE | F 0 | 00/07 | ND | 40/00 | | | 04 | IRRIGATION | INACTIVE | PCE
TCE | 5.3
11.0 | 08/87
04/85 | ND
ND | 10/09
10/09 | | | | | | 1,1-DCE | 14.0 | 04/85 | ND | 10/09 | | | | | | 1,1,1-TCA | 3.3 | 04/85 | ND | 10/09 | | | | | | NITRATE (N) | 11.9 | 02/07 | 9.7 | 10/10 | | | | | | CLO4 | ND | 06/98 | ND | 06/98 | | | 01 | IRRIGATION | INACTIVE | vocs | NA | NA | NA | NA | | | UI | IRRIGATION | INACTIVE | NITRATE (N) | NA
NA | NA | NA | NA
NA | | | | | | CLO4 | NA | NA | NA | NA | | | | | | | | | | | | | 02 | IRRIGATION | INACTIVE | PCE | 8.6 | 04/85 | ND | 10/04 | | | | | | TCE | 11.0 | 04/85 | ND | 10/04 | | | | | | NITRATE (N)
CLO4 | 20.6
ND | 10/04
06/98 | 20.6
ND | 10/04
06/98 | | | | | | 0104 | IND | 00/00 | ND | 00/00 | | | 01 | IRRIGATION | INACTIVE | TCE | 6.1 | 04/87 | ND | 10/10 | | | | | | PCE | 6.4 | 11/87 | 1.1 | 10/10 | | | | | | 1,2-DCA | 0.8 | 01/96 | ND | 10/10 | | | | | | 1,1-DCE | 1.0 | 04/87 | ND | 10/10 | | | | | | C-1,2-DCE
NITRATE (N) | 2.6
10.2 | 05/85
02/98 | ND
7.0 | 10/10
10/10 | | | | | | CLO4 | ND | 02/98 | ND | 02/98 | | | | | | AS | 3.0 | 06/95 | 2.1 | 06/96 | | | 02 | IDDICATION | INIA OTIVE | TOF | 24.0 | 05/05 | ND | 00/05 | | | 03 | IRRIGATION | INACTIVE | TCE
PCE | 21.0
7.4 | 05/85
05/85 | ND
ND | 09/05
09/05 | | | | | | 1,1-DCE | 2.7 | 05/85 | ND | 09/05 | | | | | | , | ••• | | | | | | | | | CONCENTRAT | ION (NITRA | TE IN MG/L, O | OTHERS IN | UG/L) | | |-----------|------------------------------------|----------------------|------------------------|------------|------------------------------|-----------|---------|------------------------------------| | WELL NAME | USAGE | STATUS | CONTAMINANT | HISTO | RIC HIGH | MOST | RECENT | REMARKS | | | | | OF CONCERN | VALUE | DATE | VALUE | DATE | | | | | | C-1,2-DCE | 28.0 | 05/85 | ND | 09/05 | | | | | | 1.1-DCA | 1.1 | 05/85 | ND | 09/05 | | | | | | 1,1,1-TCA | 7.5 | 05/85 | ND | 09/05 | | | | | | NITRATE (N) | 10.5 | 08/00 | 5.8 | 09/05 | | | | | | CLO4 | ND | 02/98 | ND | 02/98 | | | NOTES | CONTANINANT | | MAXIMUM | | | | REMARKS | | | NOTES | S CONTAMINANT | | | | REPORTING LIMIT | | REMARKS | | | | 1,1-Dichloroethane (1,1-DCA) | | 5 micrograms per liter | (ug/L) | 0.5 ug/L | | NA | Not Available | | | 1,1-Dichloroethylen | | 6 ug/L | | 0.5 ug/L | | ND | Not Detected above Reporting Limit | | | 1,1,1-Trichloroethar | (, , | 0 | | 0.5 ug/L NL
0.5 ug/L VOCS | | | Notification Level | | | | ethane (1,1,2,2-PCA) | | | | | VOCS | Volatile Organic Compounds | | | 1,2-Dichloroethane | (1,2-DCA) | 0.5 ug/L | | 0.5 ug/L | | | | | | Arsenic (AS)
Perchlorate (CLO4) | | 10 ug/L
6 ug/L | | 2.0 ug/L
4.0 ug/L | | | | | | Carbon Tetrachloric | | 0.5 ug/L | | 0.5 ug/L | | | | | | Cis-1,2-Dichloroeth | ` ' | 6 ug/L | | 0.5 ug/L | | | | | | Hexavalent Chromit | | NA | | 1.0 ug/L | | | | | | Trichlorofluorometh | | 150 ug/L | | 5.0 ug/L | | | | | | Trichlorotrifluoroeth | ane (Freon 113) | 1200 ug/L | | 10.0 ug/L | | | | | | Methyl Tert-Butyl Et | ther (MTBE) | 13 ug/L | | 3.0 ug/L | | | | | | Nitrate as Nitrogen (NITRATE [N]) | | 10 mg/L | | 0.4 mg/L | | | | | | Tetrachloroethylene | | 5 ug/L | | 0.5 ug/L | | | | | | Trichloroethylene (TCE) | | 5 ug/L | | 0.5 ug/L | | | | | | | ethylene (t-1,2-DCE) | 10 ug/L | | 0.5 ug/L | | | | | | Vinyl Chloride (VC) | | 0.5 ug/L | | 0.5 ug/L | | | | # APPENDIX D. POTENTIAL SITES FOR AQUIFER PERFORMANCE TESTS D #### APPENDIX D #### POTENTIAL SITES FOR AQUIFER PERFORMANCE TESTS | NAME | RECORD. | USAGE | STATUS | PERF. (1) | FUNCTION | REMARKS | |---------------------------------------|--|--|------------------------------|-------------------------------------|---|------------------------| | ALHAMBRA, CI | TY OF | <u> </u> | | | <u> </u> | | | LON 1
LON 2 | 1902789
1900017 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | 411-800
296-563 | MONITORING
PUMPING | | | AZUSA, CITY O | F | | | | | | | NO. 12
NO. 11 | 8000179
8000178 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | 206-311
200-320 | PUMPING
MONITORING | | | CALIFORNIA A | MERICAN WAT | ER COMPANY/DU | JARTE | | | | | B V
B V 2 | 1900035
8000216 | MUNICIPAL
MUNICIPAL | STANDBY
ACTIVE | 300-580
300-700 | PUMPING
MONITORING | | | CALIFORNIA D | OMESTIC WAT | ER COMPANY | | | | | | 05A
06 | 8000100
1902967 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | ?-920
200-800 | PUMPING
MONITORING | | | GLENDORA, CI | TY OF | | | | | | | 05-E
NA | 8000149
1903119 | MUNICIPAL
INDUSTRIAL | ACTIVE
INACTIVE | 150-400
?-220 | PUMPING
MONITORING | OWL ROCK PRODUCTS WELL | | GOLDEN STAT | E WATER COM | PANY (SOUTHER | N CALIFORNIA | WATER COM | PANY)/SAN DIMA | S DISTRICT | | COL-4
COL-6 | 1902268
1902270 | MUNICIPAL
MUNICIPAL | ACTIVE
INACTIVE | 122-190
?-414 | PUMPING
MONITORING | | | GOLDEN STAT | E WATER COM | PANY (SOUTHER | N CALIFORNIA | WATER COM | PANY)/SAN GABR | RIEL VALLEY DISTRICT | | FAR 1
FAR 2 | 1902034
1902948 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | 274-455
229-600 | PUMPING
MONITORING | | | SG 1
SG 2 | 1900510
1900511 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | 190-411
209-393 | MONITORING
PUMPING | | | RURBAN HOME | ES MUTUAL WA | ATER COMPANY | | | | | | NORTH 1
SOUTH 2 | 1900120
1900121 | MUNICIPAL
MUNICIPAL | ACTIVE
INACTIVE | 140-190
125-165 | MONITORING
PUMPING | | | SAN GABRIEL | COUNTY WATE | ER DISTRICT | | | | | | 05 BRA
11
12 | 1901669
8000067
8000123 | MUNICIPAL
MUNICIPAL
MUNICIPAL | INACTIVE
ACTIVE
ACTIVE | 450-800
350-800
470-1320 | MONITORING
PUMPING
MONITORING | | | SAN GABRIEL | VALLEY WATE | R COMPANY | | | | | | B24A
B24B | 8000203
8000204 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | 600-1150
600-1150 | PUMPING
MONITORING | | | SUBURBAN WA | ATER SYSTEMS | S | | | | | | 201W-9
201W-7
201W-8
201W-10 | 8000208
8000195
8000198
8000210 | MUNICIPAL
MUNICIPAL
MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE
ACTIVE | 260-650
200-650
200-650
NA | PUMPING
MONITORING
MONITORING
MONITORING | | | NAME | RECORD. | USAGE | STATUS | PERF. (1) | FUNCTION | REMARKS | |-------------------------|--------------------|------------------------|------------------|--------------------|-----------------------|--------------------------| | VALLEY COUNT | Y WATER DIS | TRICT | | | | | | E NIXON
(JOANBRIDGE) | 1900032 | MUNICIPAL | ACTIVE | 300-586 | MONITORING | ALTERNATE FOR MAINE SITE | | W NIXON
(JOANBRIDGE) | 1902356 | MUNICIPAL | ACTIVE | 300-584 | PUMPING | | | E MAINE
W MAINE | 1900027
1900028 | MUNICIPAL
MUNICIPAL | ACTIVE
ACTIVE | 250-580
250-580 | PUMPING
MONITORING | ALTERNATE FOR NIXON SITE | | VALLEY VIEW N | NUTUAL WATE | R COMPANY | | | | | | 01 | 1900363 | MUNICIPAL | INACTIVE | 300-585 | MONITORING | | | 02 | 1900364 | MUNICIPAL | ACTIVE | 300-535 | PUMPING | | | 03 | 1900365 | MUNICIPAL | INACTIVE | 100-200 | MONITORING | | | WORKMAN MIL | L INVESTMENT | COMPANY (ROS | SE HILLS MEMO | ORIAL PARK) | | | | 01 | 1900094 | IRRIGATION | INACTIVE | 137-264 | PUMPING | | | ROSE HILLS | 8000004 | MUNICIPAL | INACTIVE | ?-200 | MONITORING | BEVERLY ACRES MWC | #### NOTES: NA: NOT AVAILABLE RECORD.: RECORDATION NUMBER PERF.: PERFORATION INTERVAL (1) TOP OF THE TOP INTERVAL - BOTTOM OF THE BOTTOM INTERVAL (DEPTH BELOW GROUND SURFACE IN FEET) ## APPENDIX E. SUMMARY OF TREATMENT FACILITY ACTIVITY IN THE MAIN SAN GABRIEL BASIN #### **APPENDIX E:** #### **Summary of History and Activities of Operable Units** #### **BALDWIN PARK OPERABLE UNIT (BPOU)** **BPOU Background.** The BPOU is a seven-mile-long, one-mile-wide area of groundwater contamination that lies east of the San Gabriel River, stretching from an area north of the I-210 Freeway in Azusa to south of the I-10 Freeway in Baldwin Park (see Figure 11). The contamination primarily has been the result of improper use and disposal of industrial chemicals in the Azusa area, and it continues to spread generally in a southwesterly direction. **BPOU Cleanup Progress.** The USEPA originally issued its Record of Decision (ROD), or cleanup plan, for the BPOU in the mid-1990s. The ROD calls for pumping and
treating groundwater in the northern area, where contaminant concentrations are highest, and also in the southern area to limit further migration of contaminants. The ROD initially involved pumping and treating an average of about 7,000 gallons per minute (gpm) in the northern area and 16,000 gpm in the southern area. During 2015, the extraction rates were modified and now require pumping and treating an average of about 6,000 gpm in the northern area and 23,750 gpm in the southern area. The ROD also recommends the use of existing water supply wells, treatment systems, and pipelines when feasible. Importantly, the plan encourages adding the treated water to the potable supply, rather than simply recharging it back into the ground or discharging it to storm drains. In 2002, after several years of negotiation led by Watermaster, eight of the BPOU Responsible Parties (called Cooperating Respondents, or CRs) and seven water entities signed the BPOU Project Agreement. Under this landmark agreement, Watermaster provides overall project management and project coordination services. Under the original agreement, the CRs paid the cost to construct the USEPA-required BPOU cleanup facilities and were required to continue to provide funding to operate the facilities for about 15 years—through 2017. Subsequently, the BPOU Project Agreement was extended an additional ten years, through 2027. The BPOU Project consists of four centralized treatment facilities with a combined extraction and treatment capacity of up to 33,900 gpm and a target average pumping and treatment rate of 29,750 gpm. Those treatment facilities are located at Valley County Water District's Lante Plant (7,800 gpm), San Gabriel Valley Water Company's Plant B6 (7,800 gpm) and Plant B5 (7,800 gpm), California Domestic Water Company's (CDWC) Bassett Plant (8,000 gpm), and La Puente Valley County Water District's (LPVCWD) site (2,500 gpm). Valley County Water District (VCWD) Project. In the northerly portion of the BPOU, the VCWD Project consists of two extraction wells with a third well pending DDW review and approval for use. The wells pump up to 7,800 gpm (target average annual pumping rate of 6,000 gpm) to a centralized treatment facility at the VCWD Lante Plant. The VCWD Project consists of separate facilities to treat VOCs, 1,2,3-TCP, perchlorate, NDMA, and 1,4-dioxane. In addition, a treated-water pipeline provides up to 6,000 gpm of fully treated water to Suburban Water Systems (SWS) to offset production lost due to contamination of some of its wells; VCWD can use the remaining portion of the treated water. The VCWD Project began operation for contamination cleanup in 2006 and received its DDW operating permit in July 2007 to provide potable water to customers. Since operation began in 2006, the VCWD treatment facility has treated about 81,000 acre-feet and has removed about 43,900 pounds of contaminants, as shown in the table at the end of this Appendix (E). VCWD and its BPOU partners are coordinating the reactivation of the existing Arrow Well for treatment at the VCWD Project, which will increase the treated water supply to SWS. Meanwhile, the VCWD treatment facility continues to provide treated water for municipal supplies using the two other existing wells. La Puente Valley County Water District (LPVCWD) Project. The LPVCWD consists of three existing production wells. Well-pumping capacity is limited to 2,500 gpm to equal the capacity of the treatment facility (target average annual pumping rate of 2,250 gpm). The LPVCWD project consists of separate facilities to treat VOCs, perchlorate, NDMA, and 1,4-dioxane. The LPVCWD project is permitted by DDW and has been operating since March 2001. Treated water in excess of LPVCWD's needs is provided to SWS to enable the treatment facility to operate on a continuous basis. Since operation began, the LPVCWD treatment facility has treated about 79,200 acre-feet (including prior operations with only VOC treatment) and removed about 12,800 pounds of contaminants, as shown in the table at the end of this Appendix (E). San Gabriel Valley Water Company (SGVWC) B6 Project. The SGVWC B6 project is permitted by DDW and has been operational since July 2005. The B6 project consists of four extraction wells and a centralized treatment facility that treats up to 7,800 gpm (target average annual pumping rate of 6,500 gpm). The facility treats the contaminated groundwater for VOCs, perchlorate, NDMA, 1,4-dioxane, and nitrate. The treated water is provided to SGVWC customers. Since operation began, the SGVWC B6 treatment facility has treated about 151,900 acre-feet (including prior operations with only VOC treatment) and removed about 28,200 pounds of contaminants, as shown in the table at the end of this Appendix (E). **SGVWC B5 Project.** The SGVWC B5 Project consists of three wells that provide up to 7,800 gpm (target average annual pumping rate of 7,000 gpm) to a centralized treatment facility located at the SGVWC B5 site. The facility treats the contaminated water for VOCs, perchlorate, NDMA, and 1,4-dioxane. The treated water is provided to City of Industry customers (1,000 gpm) and the balance (6,000 gpm) is provided to SGVWC customers. The SGVWC B5 Project was permitted by DDW in fiscal year 2007–08. Since operation began in 2007, the SGVWC B5 treatment facility has treated about 135,200 acre-feet and has removed about 5,500 pounds of contaminants, as shown in the table at the end of this Appendix (E). California Domestic Water Company (CDWC) Project. The CDWC Project consists of six existing wells that provide up to 15,000 gpm (target average annual pumping rate of 8,000 gpm) to a centralized treatment facility located at the CDWC Bassett site. The facility treats the contaminated water for VOCs, perchlorate, and NDMA. The treated water is provided to CDWC customers. The CDWC Project was permitted by DDW in 1993. Since operation began in 1993, the CDWC treatment facility has treated about 383,200 acre-feet and has removed about 19,700 pounds of contaminants, as shown in the table at the end of this Appendix (E). **Purveyor Projects.** In addition to the USEPA-required BPOU facilities, Watermaster has issued permits under Section 28 of its Rules and Regulations to SWS to construct new wells that also are being used to blend with wells impacted by contaminants. These activities reduce reliance on expensive imported water and contribute to contaminant removal. **BPOU Current and Upcoming Activities.** Watermaster regularly reviews water quality data to evaluate the impact the production wells and specially constructed extraction wells have on control of contamination migration. It is difficult to develop a precise picture of the geographic extent of contamination because water quality is obtained from numerous wells that produce water from different depths below the groundwater table. Figure 17 (see Appendix F) shows the approximate extent of VOC contamination from about five years ago and from current data. It also shows the approximate geographic extent of VOC contamination, using engineering judgment, for five years into the future. The 2019–20 plume indicates treatment facilities are controlling plume movement. Watermaster anticipates the area of the VOC plume will continue to decrease, as shown on the 2024–25 plume. Similarly, Figure 18 (see Appendix F) shows the approximate extent of perchlorate. The series of three plume characterizations indicates plume movement is expected to be controlled and, similar to VOCs, continue to decrease in the future (2024–25). Watermaster, in coordination with BPOU Producers, the CRs, and USEPA, will continue to investigate, test, construct, and permit more efficient treatment facilities that provide the necessary treatment, reliability, and water quality at the lowest possible long-term cost. This includes the use of different granular activated carbons to remove VOCs, ion-exchange resins to remove perchlorate, and pressurized ultraviolet light vessels to remove NDMA and 1,4-dioxane. Watermaster maintains records on all treatment facilities on a quarterly basis. Watermaster will continue to coordinate BPOU cleanup activities among the various parties to the BPOU Project Agreement through at least 2027, interfacing with USEPA and overseeing agreements between water purveyors to use the treated water. With all of the BPOU facilities now operational, Watermaster is also coordinating collection of field data, such as water production, water quality, and water levels, and is providing BPOU Project performance reports to USEPA in cooperation with the CRs. The projects will ensure that there is an adequate water supply for the BPOU area. These projects are consistent with the USEPA ROD, meet contaminant removal and containment requirements, and meet local water supply needs. #### **SOUTH EL MONTE OPERABLE UNIT (SEMOU)** **SEMOU Background.** The SEMOU covers approximately eight square miles in the south-central portion of the Basin. It is bounded by the I-10 Freeway, the 60 Freeway, the I-605 Freeway, and San Gabriel Boulevard (see Figure 11). **SEMOU Cleanup Progress.** A ROD for the SEMOU was issued in 2000, addressing VOC contamination in a limited area. Subsequently, additional water supply wells became contaminated, and new contaminants, including perchlorate, were detected in wells in the SEMOU area. In November 2005, USEPA revisited its ROD and issued an Explanation of Significant Differences (ESD) indicating that SEMOU cleanup projects would also address treatment of perchlorate. In the meantime, area water purveyors who were impacted by contaminant migration and new perchlorate detections were forced to construct new or additional treatment facilities to maintain safe, reliable water supplies. The City of Monterey Park, SGVWC, and Golden State Water Company (GSWC) have all constructed new or additional treatment facilities within SEMOU. The San Gabriel Basin Water Quality
Authority (WQA) has assisted the Producers by securing outside funding to help offset project costs. **Monterey Park Project.** Monterey Park constructed a water treatment facility at its Delta Plant to treat VOCs and perchlorate. Monterey Park Well No. 9 (which only had detectable concentrations of VOCs) began operating through the VOC treatment facility in April 2002. Following construction and permitting of the perchlorate treatment facility, Monterey Park Well No. 12 began operation in spring 2005. Monterey Park began operation of Well No. 15 in summer 2006. Monterey Park Wells No. 12 and No. 15 are operated consistent with the SEMOU ROD. Watermaster and Monterey Park maintain data on water quality in monitoring wells located up-gradient of wells No. 9, 12, and 15. Since the treatment facility began operation, over 90,500 acre-feet of water has been treated and about 15,000 pounds of contaminants removed from the groundwater, as shown in the table at the end of this Appendix (E). San Gabriel Valley Water Company (SGVWC) Plant 8 Project. SGVWC Plant 8 VOC Treatment Facility has a capacity of 5,000 gpm and has been in operation since fiscal year 2001–02. In response to increasing VOC concentrations, SGVWC voluntarily constructed supplemental VOC treatment at Plant 8. The supplemental VOC treatment facility was permitted by DDW in September 2006 and went online in December 2006. SGVWC plans to construct a 1,4-dioxane treatment facility within the next five years. Since the original VOC treatment facility began operation, over 49,800 acre-feet of water has been treated and about 8,000 pounds of contaminants have been removed from the groundwater, as shown in the table at the end of this Appendix (E). **Golden State Water Company Project.** GSWC VOC treatment facility at San Gabriel wells No. 1 and 2 had been permitted and operating but were voluntarily removed from operation after the establishment of the revised Perchlorate NL in 2002. Subsequently, GSWC installed an ion-exchange system to remove perchlorate and has resumed operation at its San Gabriel Well No. 1. The facility has treated about 24,700 acre-feet of water and removed about 700 pounds of contaminants, as shown in the table at the end of this Appendix (E). **SEMOU Current and Upcoming Activities.** USEPA is currently preparing a SEMOU/WNOU Supplemental Feasibility Study which would evaluate remedial alternatives with different goals and will be available late 2020. In addition, USEPA is also preparing an Enhanced Remedial Alternative Study for the SEMOU/WNOU which would evaluate a range of potential remedy enhancements and will be available late 2020. Over the next five years, Watermaster will continue to review all proposed modifications to the treatment facilities through the Section 28 permitting process. In addition, Watermaster will participate in planning/progress meetings which are held on a quarterly basis. Watermaster maintains records on all treatment facilities on a quarterly basis. #### **EL MONTE OPERABLE UNIT (EMOU)** **EMOU Background.** The EMOU covers an area of about 10 square miles in the south-central portion of the Basin. It is bounded by the I-10 Freeway on the south, Rosemead Boulevard on the west, and Santa Anita Avenue and Rio Hondo on the east. The northern boundary generally follows Lower Azusa Road (see Figure 11). While shallow contamination is found throughout the EMOU, deep (intermediate zone) contamination is found in the northwest and eastern area of the EMOU. **EMOU Cleanup Progress.** The USEPA's ROD for the EMOU includes numerous small, shallow extraction wells and treatment, along with two areas of deep extraction and treatment. Due to generally poor water quality in the area, the shallow groundwater will not be used for a potable supply. The deep extractions are recommended for potable use by local water purveyors. The remediation efforts are separated into "Westside" and "Eastside" activities. **EMOU Westside Projects.** There are plans to clean up contaminants occurring in the shallow aquifer. The shallow-zone water is treated for VOCs, discharged to an adjacent channel, and infiltrated back into the Basin as fully treated water. The treatment facility (Hermetic Seal) has treated about 500 acre-feet and removed about 40 pounds of contaminants, as shown in the table at the end of this Appendix (E). The deep-zone extraction and treatment in the northwest area is being accomplished by the existing Encinitas Wellfield and Treatment Facility owned by GSWC, which began operation during 1998. The GSWC treatment facility has treated about 31,800 acre-feet of water and has removed about 740 pounds of contaminants, as shown in the table at the end of this Appendix (E). During July 2002, USEPA issued an ESD, which indicated that perchlorate, NDMA, 1,4-dioxane, and hexavalent chromium had been detected in excess of DDW notification levels. In the event water from extraction wells cannot be blended to acceptable levels, additional treatment facilities will need to be installed, significantly increasing cleanup costs. Thus far, extraction and treatment of VOCs at GSWC Encinitas Plant have not been impacted. **EMOU Eastside Projects.** On the Eastside, the shallow-zone water is treated for VOCs, discharged to an adjacent channel, and infiltrated back into the Basin as fully treated water. The treatment facility (Gould/Johnson Controls) has treated about 160 acre-feet and removed about 30 pounds of contaminants, as shown in the table at the end of this Appendix (E). The deep-zone extraction and treatment in the northwest area is being accomplished by three new extraction wells that began operation during 2015–16. The operation of the treatment facility and use of the treated water were transferred to the City of El Monte in early 2019. The treatment facility has treated about 4,000 acre-feet of water and has removed about 200 pounds of contaminants, as shown in the table at the end of this Appendix (E). **EMOU Current and Upcoming Activities.** Over the next five years, Watermaster will continue to review all proposed modifications to the treatment facilities through the Section 28 permitting process. In addition, Watermaster will participate in planning/progress meetings held on a quarterly basis and will maintain records on all treatment facilities on a quarterly basis. #### **PUENTE VALLEY OPERABLE UNIT (PVOU)** **PVOU Background.** The PVOU lies in the southeastern portion of the Basin, essentially bounded by the 60 Freeway on the south, Azusa Avenue on the east, and the I-10 Freeway on the north (see Figure 11). The PVOU encompasses the Puente Valley, which is tributary to the southeasterly portion of the Basin. Contamination in the PVOU includes various VOCs. All aquifers within the PVOU (shallow, intermediate, and deep) are considered sources for municipal water supplies. **PVOU Cleanup Progress.** The USEPA issued a ROD for the PVOU. The plan identified in the ROD includes extraction and treatment of groundwater within the shallow and intermediate zones from wells located in the center of the PVOU. **PVOU Shallow-Zone Project.** The cleanup plan for shallow-zone contamination includes nine wells that will collectively produce about 1,000 gpm. Due to the poor quality of shallow-zone water (which is high in naturally occurring dissolved solids), the water will not be used as drinking water, but will instead be treated to remove VOCs and then recharged back into the Basin. Watermaster has developed an agreement with the Responsible Party to allow production and discharge of the PVOU shallow-zone water. **PVOU Intermediate Zone.** Watermaster is working with USEPA, Responsible Parties, and local water entities to develop a cleanup solution that meets potable water supply needs. Approximately 1,000 gpm will be produced from the intermediate-zone extraction wells, treated, and used for potable purposes by a local water purveyor. **PVOU Current and Upcoming Activities.** Over the next five years, it is anticipated that the intermediate-zone extraction wells and treatment facility will be permitted and begin supplying treated water for potable purposes. Watermaster will continue to review all proposed modifications to the treatment facilities through the Section 28 permitting process. In addition, Watermaster will participate in planning/progress meetings, which are held on a quarterly basis. Watermaster maintains records on all treatment facilities on a quarterly basis. #### WHITTIER NARROWS OPERABLE UNIT (WNOU) **WNOU Background.** The USEPA declared the WNOU a "fund-lead" project, meaning that the USEPA (with the State) has funded the design, construction, and operation of the remedy, and will seek cost recovery from Responsible Parties later. The USEPA cleanup plan involves a series of shallow- and intermediate-zone extraction wells with treatment (see Figure 11). **WNOU Cleanup Progress.** As of May 2013, the responsibility for the WNOU was transferred from USEPA to the California Department of Toxic Substances Control (DTSC). Furthermore, the WNOU Shallow-Zone Project (as described below) ceased operation during 2013 due to improved water quality. **WNOU Shallow-Zone Project Ceased Operation in 2012–13.** During fiscal year 2002–03, NDMA was detected in some of the shallow extraction wells, prolonging the testing and review process for the shallow-zone water through June 2007. Studies indicated the shallow-zone contamination could be adequately contained at an extraction rate of 2,500 gpm. Treated shallow-zone water has been discharged for conservation and recreational use at Legg Lake, and Watermaster entered into a production agreement with USEPA and the County of Los Angeles regarding the accounting of that water. Since production began at the WNOU facility, over 30,000 acrefeet of groundwater have been treated and over 1,620 pounds of contaminants have been removed. During fiscal year 2012–13 the WNOU's
Shallow-Zone Project ceased operation. **WNOU Intermediate-Zone Project.** The City of Whittier obtained a DDW permit to use the 6,000 gpm of treated intermediate-zone water for municipal use instead of producing water from its existing wells. During April 2013, the City of Whittier ceased taking treated intermediate-zone water. Subsequently, the treated intermediate-zone water production was increased, and the balance delivered to Legg Lake, while DTSC negotiates with a municipal water supplier to accept additional treated intermediate-zone water. Since production began in late 2005, about 60,000 acre-feet of groundwater has been treated and about 1,900 pounds of contaminants removed, as shown in the table at the end of this Appendix (E). **WNOU Current and Upcoming Activities.** USEPA is currently preparing a SEMOU/WNOU Supplemental Feasibility Study which would evaluate remedial alternatives with different goals and will be available in late 2020. In addition, USEPA is also preparing an Enhanced Remedial Alternative Study for the SEMOU/WNOU which would evaluate a range of potential remedy enhancements and will be available late 2020. Over the next five years, it is anticipated that SGVWC will operate the intermediate-zone extraction wells and treatment facility including a blend plan, and will take treated water for potable use in addition to continued deliveries to Legg Lake. This will enable the WNOU treatment facility to produce a greater amount of water and to put all the water to beneficial uses. Watermaster will continue to review all proposed modifications to the treatment facility through the Section 28 permitting process. In addition, Watermaster will participate in planning/progress meetings, which are held on a quarterly basis. Watermaster maintains records on all treatment facilities on a quarterly basis. #### AREA 3 OPERABLE UNIT **Area 3 Background.** The Area 3 Operable Unit is located in the western portion of the Basin. It is generally bounded on the south by the I-10 Freeway, on the east by Rosemead Boulevard, on the north by Huntington Drive, and on the west by the boundary of the Main Basin (see Figure 11). **Area 3 Cleanup Progress.** USEPA has installed a series of monitoring wells to collect water quality data to supplement data collected from water supply wells and has initiated a Remedial Investigation and Feasibility Study to identify the extent of the contamination and to evaluate appropriate cleanup remedies. Watermaster issued a permit during 2005–06 to the City of Alhambra to construct a treatment facility to remove VOCs from wells No. 7, 8, 11, and 12. The treatment facility became operational in April 2009, prior to USEPA's development of a final remedy, but it is necessary for Alhambra to receive a reliable source of supply from the groundwater Basin. The facility has treated about 28,700 acre-feet and has removed about 1,200 pounds of contaminants, as shown in the table at the end of this Appendix (E). **Area 3 Current and Upcoming Activities.** Watermaster will continue to review all proposed modifications to the treatment facility through the Section 28 permitting process. In addition, Watermaster will participate in planning/progress meetings held on a quarterly basis. Watermaster maintains records on all treatment facilities on a quarterly basis. #### APPENDIX E #### SUMMARY OF TREATMENT FACILITY ACTIVITY IN THE MAIN SAN GABRIEL BASIN AS OF JUNE 30, 2020 | Operable Unit | | | | er Treated | Total Contamina | ants Removed | |--|--|--|--|---|---------------------------------------|---------------------------------------| | Treatment
Facilty
Owner | Treatment
Facility(s) | Start
Date 1/ | Fiscal
Year
2019-20
(Acre-feet) | Accum.
Total
(Acre-feet) | Fiscal
Year
2019-20
(Pounds) | Accum.
Total
(Pounds) | | AREA 3
ALHAMBRA, CITY OF | Well No. 7
Well No. 7, 8, 11 & 12 | July 2001
April 2009 |
1,665.37 | 7,582.35
28,716.17 |
246.1 | 130.1
1,159.6 | | BPOU
CALIFORNIA DOMESTIC
WATER COMPANY | Well No. 3, Well No. 5A
Well No. 6, & Well No. 10 | September 1993
April 1997 | 13,677.72 | 383,181.36 | 1,186.8 | 19,746.6 | | LA PUENTE VALLEY COUNTY WATER DISTRICT | Well No. 2, 3 & 4
Well No. 2, 3 & 5 (BPOU) | August 1992
January 2000 |
3,822.80 | 11,493.13
67,704.91 |
401.7 | 826.9
11,951.7 | | SAN GABRIEL VALLEY
WATER COMPANY | Well B6C 2/
Well B6D 2/
Plant B5 (BPOU)
Plant B6 (BPOU) | April 1994
April 1994
January 2007
September 2004 |
10,833.43
9,034.03 | 5,194.17
14,526.27
135,234.61
132,211.50 |
481.0
1,957.3 | 856.2
421.7
5,505.2
26,921.6 | | VALLEY COUNTY WATER DISTRICT | Lante
Lante, SA1-1 & SA1-2 (BPOU) | June 1984
December 2004 |
3,579.83 | 7,719.61
80,994.10 |
1,074.2 | 10,356.7
43,894.3 | | EMOU
ADAMS RANCH MUTUAL
WATER COMPANY | Well No. 3 2/ | November 2003 | _ | 881.58 | _ | 32.7 | | EL MONTE, CITY OF | Well No. 14, 15 & 16 3/ | January 2019 | 830.89 | 3,954.06 | 52.6 | 211.2 | | GOULD AND JOHNSON
CONTROLS | EMOU (Shallow Zone) | October 2015 | 34.48 | 162.41 | 3.2 | 27.8 | | GOLDEN STATE
WATER COMPANY (SGV) | Encinita No. 1, 2 & 3 | April 1998 | 1,812.70 | 31,765.71 | 27.3 | 735.9 | | HERMETIC SEAL CORPORATION | Hermetic Seal | May 2012 | 50.68 | 456.56 | 5.3 | 43.3 | | PVOU
BDP - CARRIER | Carrier | April 1988 | 0.00 | 6,789.57 | 0.0 | 2,843.1 | | SEMOU
MONTEREY PARK, CITY OF | Well No. 5
Well No. 9 & 12, 15 | September 1999
April 2002 | 407.55
6,138.60 | 19,081.46
90,533.26 | 10.5
802.4 | 1,367.6
15,020.6 | | SAN GABRIEL VALLEY
WATER COMPANY | Well 8B, 8C, 8D & 8E | August 2002 | 3,313.09 | 49,837.46 | 921.3 | 8,028.6 | | GOLDEN STATE
WATER COMPANY (SGV) | San Gabriel No.1 & 2 | November 2001 | 1,943.10 | 24,735.48 | 47.0 | 705.6 | | WNOU
EPA | WNOU (Shallow Zone) 2/ | December 1999 | _ | 30,065.52 | _ | 1,618.9 | | SAN GABRIEL VALLEY
WATER COMPANY | WNOU
(Intermediate Zone) 4/ | December 2005 | 3,415.87 | 58,954.92 | 26.1 | 1,851.1 | | PRODUCER
FACILITY
ARCADIA, CITY OF | Longden 1 & 2 | January 1985 | 890.14 | 71,542.16 | 8.1 | 758.8 | | BOZUNG | Well B36, F38, F39
& BC34 5/ | October 1994 | _ | 233.00 | _ | 131.3 | | EL MONTE, CITY OF | Well No. 12
Well No. 10 2/
Well No. 2A | February 1997
May 2004
July 1999 | 81.32
—
614.23 | 16,459.25
6,380.82
11,646.45 | 14.8
—
4.6 | 1,176.4
43.4
159.3 | | EPA | Richwood (North Well) 6/
Richwood (South Well) 6/ | April 1990
April 1990 | _ | 451.98 | _ | 5.8 | | Start Date 1/ 1 May 2005 June 2016 April 1986 April 1986 March 1996 October 2007 June 2004 | Fiscal
Year
2019-20
(Acre-feet)
11.90
419.80
—
1,607.73
2,631.73 | Accum.
Total
(Acre-feet) 19,563.37 2,206.31 2,553.65 51,365.67 24,584.89 | Fiscal Year 2019-20 (Pounds) 0.0 5.1 | Accum.
Total
(Pounds)
366.5
20.2
44.6 | |---|--|--|--|--| | Date 1/ May 2005 June 2016 April 1986 April 1986 March 1996 October 2007 | 2019-20
(Acre-feet)
11.90
419.80 | Total (Acre-feet) 19,563.37 2,206.31 2,553.65 51,365.67 | 2019-20
(Pounds) 0.0 5.1 — 44.4 | Total (Pounds) 366.5 20.2 44.6 | | Date 1/ May 2005 June 2016 April 1986 April 1986 March 1996 October 2007 | (Acre-feet) 11.90 419.80 — 1,607.73 | (Acre-feet) 19,563.37 2,206.31 2,553.65 51,365.67 | (Pounds) 0.0 5.1 — 44.4 | (Pounds) 366.5 20.2 44.6 | | 1 May 2005 June 2016 April 1986 April 1986 March 1996 October 2007 | 11.90
419.80
—
1,607.73 | 19,563.37
2,206.31
2,553.65
51,365.67 | 0.0
5.1
— | 366.5
20.2
44.6 | | June 2016 April 1986 April 1986 March 1996 October 2007 | 419.80
—
1,607.73 | 2,206.31
2,553.65
51,365.67 | 5.1
—
44.4 | 20.2 | | June 2016 April 1986 April 1986 March 1996 October 2007 | 419.80
—
1,607.73 | 2,206.31
2,553.65
51,365.67 | 5.1
—
44.4 | 20.2 | | June 2016 April 1986 April 1986 March 1996 October 2007 | 419.80
—
1,607.73 | 2,206.31
2,553.65
51,365.67 | 5.1
—
44.4 | 20.2 | | April 1986
April 1986
March 1996
October 2007 |
1,607.73 | 2,553.65
51,365.67 | - | 44.6 | | April 1986 March 1996 October 2007 | | 51,365.67 | | | | October 2007 | | , | | 1,054.4 | | | 2,631.73 | 24,584.89 | | | | lune 2004 | | , | 7.4 | 209.6 | | Julie 2004 | 909.18 | 30,775.90 | 15.5 | 1,740.6 | | March 1991 | 4.27 | 45,129.86 | 0.0 | 320.1 | | March 1993 | 455.64 | 50,173.14 | 38.0 | 3,351.8 | | March 1993 | _ | 46,711.28 | _ | 1,824.2 | | January 1999 | | 24,093.04 | | 1,233.5 | | December 2005 | 213.93 | 4,862.47 | 6.8 | 81.6 | | May 2001 | _ | 2,247.59 | _ | 16.2 | | June 1990 | 2,776.80 | 60,894.12 | 0.0 | 1,831.2 | | January 2004 | 4,081.03 | 57,617.37 | 0.0 | 332.6 | | February 1992 | _ | 7,250.41 | _ | 17,423.0 | | / March 1007 | _ | 1,229.02 | _ | 82.5 | | iviaiCII 1997 | | | | | | January 2008 | 11.90 | 335.01 | 7.1 | 192.6 | | 2 | February 1992
2/ March 1997 | • | | | TOTAL 75,269.74 1,733,968.12 7,394.7 188,215.6 Footnotes: 1/ From date of beginning of operation. 2/ Well(s) no longer pumps to treatment facility. ^{Z/ Well(s) no longer pumps to treatment facility. 3/ EMOU (Deep Zone) operation transferred to City of El Monte in January 2019. 4/ Previously operated by City of Whittier from December
2005 to May 2013. 5/ Treatment facility has been permanently dismantled. 6/ Wells destroyed in June 1999. 7/ Well destroyed in October 2016.} ### APPENDIX F. SIMULATED BASIN GROUNDWATER CONTOURS 2019-20 AND 2024-25 (FIGURES 14 AND 15), SIMULATED GROUNDWATER ELEVATION CHANGES BETWEEN FY 2019-20 AND FY 2024-25 (FIGURE 16), VOC PLUME MAP IN BPOU AND PERCHLORATE PLUME MAP IN BPOU (FIGURES 17 AND 18) Miles ### SIMULATED GROUNDWATER ELEVATION CHANGES BETWEEN FY 2019–20 AND FY 2024–25 #### FIGURE 17 VOC PLUME MAPS 1/ Interpolated composite VOC plumes based on existing water quality data 2/ Projected composite VOC plume ## FIGURE 18 PERCHLORATE PLUME MAPS 1/ Interpolated composite CLO4 plumes based on existing water quality data 2/ Projected composite CLO4 plume #### **WATERMASTER BOARD** Lynda Noriega, Chair – California Domestic Water Company David Michalko, Vice Chair – Valencia Heights Water Company Dan Arrighi, Secretary – San Gabriel Valley Water Company Ron Bow, Treasurer – City of Monterey Park David De Jesus, Covina Irrigating Company Anthony R. Fellow, Upper San Gabriel Valley Municipal Water District Benjamin Lewis, Jr., Golden State Water Company Steven Placido, San Gabriel Valley Municipal Water District Charles Trevino, Upper San Gabriel Valley Municipal Water District #### **EXECUTIVE OFFICER** **Anthony C. Zampiello** 725 North Azusa Avenue • Azusa, California 91702 Telephone (626) 815-1300 • Fax (626) 815-1303 www.watermaster.org